1
|
Makohon-Moore AP, Lipson EJ, Hooper JE, Zucker A, Hong J, Bielski CM, Hayashi A, Tokheim C, Baez P, Kappagantula R, Kohutek Z, Makarov V, Riaz N, Postow MA, Chapman PB, Karchin R, Socci ND, Solit DB, Chan TA, Taylor BS, Topalian SL, Iacobuzio-Donahue CA. The Genetic Evolution of Treatment-Resistant Cutaneous, Acral, and Uveal Melanomas. Clin Cancer Res 2021; 27:1516-1525. [PMID: 33323400 PMCID: PMC7925434 DOI: 10.1158/1078-0432.ccr-20-2984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Melanoma is a biologically heterogeneous disease composed of distinct clinicopathologic subtypes that frequently resist treatment. To explore the evolution of treatment resistance and metastasis, we used a combination of temporal and multilesional tumor sampling in conjunction with whole-exome sequencing of 110 tumors collected from 7 patients with cutaneous (n = 3), uveal (n = 2), and acral (n = 2) melanoma subtypes. EXPERIMENTAL DESIGN Primary tumors, metastases collected longitudinally, and autopsy tissues were interrogated. All but 1 patient died because of melanoma progression. RESULTS For each patient, we generated phylogenies and quantified the extent of genetic diversity among tumors, specifically among putative somatic alterations affecting therapeutic resistance. CONCLUSIONS In 4 patients who received immunotherapy, we found 1-3 putative acquired and intrinsic resistance mechanisms coexisting in the same patient, including mechanisms that were shared by all tumors within each patient, suggesting that future therapies directed at overcoming intrinsic resistance mechanisms may be broadly effective.
Collapse
Affiliation(s)
- Alvin P Makohon-Moore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Evan J Lipson
- Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, Kimmel Cancer Center, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jody E Hooper
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Amanda Zucker
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jungeui Hong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Craig M Bielski
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Akimasa Hayashi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Kyorin University, Mitaka City, Tokyo, Japan
| | - Collin Tokheim
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Priscilla Baez
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rajya Kappagantula
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zachary Kohutek
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vladimir Makarov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem Riaz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Paul B Chapman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rachel Karchin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Nicholas D Socci
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Suzanne L Topalian
- Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, Kimmel Cancer Center, Baltimore, Maryland.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine A Iacobuzio-Donahue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
2
|
Guo LL, Wang GC, Li PJ, Wang CM, Liu LB. Recombinant adenovirus expressing a dendritic cell-targeted melanoma surface antigen for tumor-specific immunotherapy in melanoma mice model. Exp Ther Med 2018; 15:5394-5402. [PMID: 29844804 DOI: 10.3892/etm.2018.6085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/05/2017] [Indexed: 11/06/2022] Open
Abstract
Viral vectors represent a potential strategy for the treatment of human malignant tumors. Currently, recombinant adenovirus vectors are commonly used as gene therapy vehicles, as it possesses a proven safety profile in normal human cells. The recombinant adenovirus system has an ability to highly express exogenous genes and increase the stability of the carrier, which is only transiently expressed in the host cell genome, without integrating. Malignant melanoma cells are produced by the skin, and melanocyte tumors that exhibit higher malignant degrees lead to earlier transfer and higher mortality. In the present study, a recombinant adenovirus (rAd) was generated to express Anti-programmed death-1 (rAd-Anti-PD-1) and used to investigate the efficacy in melanoma cells and tumors. The results demonstrated that B16-F10 cell growth was significantly inhibited and the apoptosis incidence rate was markedly promoted following rAd-PD-1 treatment. The present study demonstrated that the production of α and β interferon was increased, which led to the induction of dendritic cell (DCs) maturation in rAd-anti-PD-1-treated mice. The present study indicated that rAd-anti-PD-1 exhibited the ability to generate more cluster of differentiation (CD)4+CD8+ T cells and induce a PD-1-specific cytotoxic T lymphocyte through DC-targeted surface antigens in mice. This resulted in a further enhanced recognition of melanoma cells due to DCs being targeted by the rAd-anti-PD-1-encoded PD-1. Notably, mice treated with the rAd-anti-PD-1-targeted PD-1 demonstrated an improved protection compared with tumor-bearing mice from the challenge group treated with a recombinant gutless adenovirus and Anti-PD-1. In conclusion, the present study demonstrated that targeting the melanoma surface antigens via the rAd-anti-PD-1-infected tumor cells enhanced the ability of recombinant adenovirus to induce a potent tumor-inhibitory effect and antigen-specific immune response.
Collapse
Affiliation(s)
- Li-Li Guo
- Department of Plastic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Gang-Cheng Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Peng-Jie Li
- Department of Plastic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Cui-Mei Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lin-Bo Liu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|