1
|
Li W, Cheng L, He X, He G, Liu Y, Sang Z, Wang Y, Shao M, Xiong T, Xu H, Zhao J. Gut fungi of black-necked cranes (Grus nigricollis) respond to dietary changes during wintering. BMC Microbiol 2024; 24:232. [PMID: 38951807 PMCID: PMC11218170 DOI: 10.1186/s12866-024-03396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Migratory birds exhibit heterogeneity in foraging strategies during wintering to cope with environmental and migratory pressures, and gut bacteria respond to changes in host diet. However, less is known about the dynamics of diet and gut fungi during the wintering period in black-necked cranes (Grus nigricollis). RESULTS In this work, we performed amplicon sequencing of the trnL-P6 loop and ITS1 regions to characterize the dietary composition and gut fungal composition of black-necked cranes during wintering. Results indicated that during the wintering period, the plant-based diet of black-necked cranes mainly consisted of families Poaceae, Solanaceae, and Polygonaceae. Among them, the abundance of Solanaceae, Polygonaceae, Fabaceae, and Caryophyllaceae was significantly higher in the late wintering period, which also led to a more even consumption of various food types by black-necked cranes during this period. The diversity of gut fungal communities and the abundance of core fungi were more conserved during the wintering period, primarily dominated by Ascomycota and Basidiomycota. LEfSe analysis (P < 0.05, LDA > 2) found that Pyxidiophora, Pseudopeziza, Sporormiella, Geotrichum, and Papiliotrema were significantly enriched in early winter, Ramularia and Dendryphion were significantly enriched in mid-winter, Barnettozyma was significantly abundant in late winter, and Pleuroascus was significantly abundant in late winter. Finally, mantel test revealed a significant correlation between winter diet and gut fungal. CONCLUSIONS This study revealed the dynamic changes in the food composition and gut fungal community of black-necked cranes during wintering in Dashanbao. In the late wintering period, their response to environmental and migratory pressures was to broaden their diet, increase the intake of non-preferred foods, and promote a more balanced consumption ratio of various foods. Balanced food composition played an important role in stabilizing the structure of the gut fungal community. While gut fungal effectively enhanced the host's food utilization rate, they may also faced potential risks of introducing pathogenic fungi. Additionally, we recongnized the limitations of fecal testing in studying the composition of animal gut fungal, as it cannot effectively distinguished between fungal taxa from food or soil inadvertently ingested and intestines. Future research on functions such as cultivation and metagenomics may further elucidate the role of fungi in the gut ecosystem.
Collapse
Affiliation(s)
- Wenhao Li
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, China
| | - Lijun Cheng
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, 657000, China
| | - Xin He
- Sichuan Academy of Grassland Sciences, Chengdu, 610000, China
| | - Guiwen He
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, 657000, China
| | - Yutong Liu
- Sichuan Academy of Grassland Sciences, Chengdu, 610000, China
| | - Zhenglin Sang
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, 657000, China
| | - Yuanjian Wang
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Zhaotong, Yunnan Province, 657000, China
| | - Mingcui Shao
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Zhaotong, Yunnan Province, 657000, China
| | - Tingsong Xiong
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Zhaotong, Yunnan Province, 657000, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, China.
| | - Junsong Zhao
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China.
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, 657000, China.
| |
Collapse
|
2
|
Li W, Zhao J, Tian H, Shen Y, Wang Y, Shao M, Xiong T, Yao Y, Zhang L, Chen X, Xiao H, Xiong Y, Yang S, Tan C, Xu H. Gut microbiota enhance energy accumulation of black-necked crane to cope with impending migration. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12598-x. [PMID: 37249588 DOI: 10.1007/s00253-023-12598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Less is known about the role of gut microbiota in overwintering environmental adaptation in migratory birds. Here, we performed metagenomic sequencing on fresh fecal samples (n = 24) collected during 4 periods of overwintering (Dec: early; Jan: middle I; Feb: middle II; Mar: late) to characterize gut microbial taxonomic and functional characteristics of black-necked crane (Grus nigricollis). The results demonstrated no significant change in microbial diversity among overwintering periods. Analysis of compositions of microbiomes with bias correction (ANCOM-BC) determined 15 Proteobacteria species enriched in late overwintering period. Based on previous reports, these species are associated with degradation of chitin, cellulose, and lipids. Meanwhile, fatty acid degradation and betalain biosynthesis pathways are enriched in late overwintering period. Furthermore, metagenomic binning obtained 91 high-quality bins (completeness >70% and contamination <10%), 5 of which enriched in late overwintering period. Carnobacterium maltaromaticum, unknown Enterobacteriaceae, and Yersinia frederiksenii have genes for chitin and cellulose degradation, acetate, and glutamate production. Unknown Enterobacteriaceae and Y. frederiksenii hold genes for synthesis of 10 essential amino acids required by birds, and the latter has genes for γ-aminobutyrate production. C. maltaromaticum has genes for pyridoxal synthesis. These results implied the gut microbiota is adapted to the host diet and may help black-necked cranes in pre-migratory energy accumulation by degrading the complex polysaccharide in their diet, supplying essential amino acids and vitamin pyridoxal, and producing acetate, glutamate, and γ-aminobutyrate that could stimulate host feeding. Additionally, enriched Proteobacteria also encoded more carbohydrate-active enzymes (CAZymes) and antibiotic resistance genes (ARGs) in late overwintering period. KEY POINTS: • Differences in gut microbiota function during overwintering period of black-necked cranes depend mainly on changes in core microbiota abundance • Gut microbiota of black-necked crane adapted to the diet during overwintering period • Gut microbiota could help black-necked cranes to accumulate more energy in the late overwintering period.
Collapse
Affiliation(s)
- Wenhao Li
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Junsong Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Hong Tian
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Yanqiong Shen
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Yuanjian Wang
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Yunnan Province, Zhaotong, 657000, Yunnan, China
| | - Mingcui Shao
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Yunnan Province, Zhaotong, 657000, Yunnan, China
| | - Tingsong Xiong
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Yunnan Province, Zhaotong, 657000, Yunnan, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Lin Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xinyu Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Hongtao Xiao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ying Xiong
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Cui Tan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
3
|
Sato CF, Lindenmayer DB. The use of state‐and‐transition models in assessing management success. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Chloe F. Sato
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
- Centre for Integrative Ecology Deakin University Burwood Victoria Australia
| | - David B. Lindenmayer
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
- National Environmental Science Program Threatened Species Recovery Hub The Australian National University Canberra Australian Capital Territory Australia
- Sustainable Farms, Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| |
Collapse
|
4
|
Lindenmayer DB, Blanchard W, Blair D, Westgate MJ, Scheele BC. Spatiotemporal effects of logging and fire on tall, wet temperate eucalypt forest birds. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01999. [PMID: 31519053 DOI: 10.1002/eap.1999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Forests globally are subject to disturbances such as logging and fire that create complex temporal variation in spatial patterns of forest cover and stand age. However, investigations that quantify temporal changes in biodiversity in response to multiple forms of disturbance in space and time are relatively uncommon. Over a 10-yr period, we investigated the response of bird species to spatiotemporal changes in forest cover associated with logging and wildfire in the mountain ash (Eucalyptus regnans) forests of southeastern Australia. Specifically, we examined how bird occurrence changed with shifts in the proportion of area burned or logged in a 4.5 km radius surrounding our 88 long-term field survey sites, each measuring 1 ha in size. Overall species richness was greatest in older forest patches, but declined as the amount of fire around each site increased. At the individual species level, 31 of the 37 bird species we modeled exhibited a negative response to the amount of fire in the surrounding landscape, while one species responded positively to fire. Only nine species exhibited signs of recovery in the 6 yr of surveys following the fire. Five species were more likely to be detected as the proportion of logged forest surrounding a site increased, suggesting a possible "concentration effect" with displaced birds moving into unlogged areas following harvesting of adjacent areas. We also identified relationships between the coefficients of life history attributes and spatiotemporal changes in forest cover and stand age. Large-bodied birds and migratory species were associated with landscapes subject to large amounts of fire in 2009. There were associations between old growth stands and small-bodied bird species and species that were not insectivores. Our study shows that birds in mountain ash forests are strongly associated with old growth stands and exhibit complex, time-dependent, and species-specific responses to landscape disturbance. Despite logging and fire both being high-severity perturbations, no bird species exhibited similar responses to fire and logging in the landscape surrounding our sites. Thus, species responses to one kind of landscape-scale disturbance are not readily predictable based on an understanding of the responses to another kind of (albeit superficially similar) disturbance.
Collapse
Affiliation(s)
- David B Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- Threatened Species Recovery Hub, National Environmental Science Program, Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Wade Blanchard
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - David Blair
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- Threatened Species Recovery Hub, National Environmental Science Program, Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Martin J Westgate
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Ben C Scheele
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- Threatened Species Recovery Hub, National Environmental Science Program, Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| |
Collapse
|
5
|
Echeverri A, Frishkoff LO, Gomez JP, Zook JR, Juárez P, Naidoo R, Chan KMA, Karp DS. Precipitation and tree cover gradients structure avian alpha diversity in North‐western Costa Rica. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Alejandra Echeverri
- Institute for Resources, Environment, and Sustainability University of British Colombia Vancouver British Colombia Canada
| | - Luke O. Frishkoff
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
- Department of Biology University of Texas at Arlington Arlington Texas
| | - Juan Pablo Gomez
- Departamento de Química y Biología Universidad del Norte Barranquilla Colombia
| | - Jim R. Zook
- Unión de Ornitólogos de Costa Rica Naranjo de Alajuela Costa Rica
| | - Pedro Juárez
- Departamento de Historia Natural Herbario Nacional de Costa Rica, Museo Nacional de Costa Rica San José Costa Rica
| | - Robin Naidoo
- Institute for Resources, Environment, and Sustainability University of British Colombia Vancouver British Colombia Canada
- World Wildlife Fund Washington District of Columbia
| | - Kai M. A. Chan
- Institute for Resources, Environment, and Sustainability University of British Colombia Vancouver British Colombia Canada
| | - Daniel S. Karp
- Department of Wildlife, Fish, and Conservation Biology University of California Davis California
| |
Collapse
|