1
|
Hua F, Wang W, Nakagawa S, Liu S, Miao X, Yu L, Du Z, Abrahamczyk S, Arias-Sosa LA, Buda K, Budka M, Carrière SM, Chandler RB, Chiatante G, Chiawo DO, Cresswell W, Echeverri A, Goodale E, Huang G, Hulme MF, Hutto RL, Imboma TS, Jarrett C, Jiang Z, Kati VI, King DI, Kmecl P, Li N, Lövei GL, Macchi L, MacGregor-Fors I, Martin EA, Mira A, Morelli F, Ortega-Álvarez R, Quan RC, Salgueiro PA, Santos SM, Shahabuddin G, Socolar JB, Soh MCK, Sreekar R, Srinivasan U, Wilcove DS, Yamaura Y, Zhou L, Elsen PR. Ecological filtering shapes the impacts of agricultural deforestation on biodiversity. Nat Ecol Evol 2024; 8:251-266. [PMID: 38182682 DOI: 10.1038/s41559-023-02280-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/14/2023] [Indexed: 01/07/2024]
Abstract
The biodiversity impacts of agricultural deforestation vary widely across regions. Previous efforts to explain this variation have focused exclusively on the landscape features and management regimes of agricultural systems, neglecting the potentially critical role of ecological filtering in shaping deforestation tolerance of extant species assemblages at large geographical scales via selection for functional traits. Here we provide a large-scale test of this role using a global database of species abundance ratios between matched agricultural and native forest sites that comprises 71 avian assemblages reported in 44 primary studies, and a companion database of 10 functional traits for all 2,647 species involved. Using meta-analytic, phylogenetic and multivariate methods, we show that beyond agricultural features, filtering by the extent of natural environmental variability and the severity of historical anthropogenic deforestation shapes the varying deforestation impacts across species assemblages. For assemblages under greater environmental variability-proxied by drier and more seasonal climates under a greater disturbance regime-and longer deforestation histories, filtering has attenuated the negative impacts of current deforestation by selecting for functional traits linked to stronger deforestation tolerance. Our study provides a previously largely missing piece of knowledge in understanding and managing the biodiversity consequences of deforestation by agricultural deforestation.
Collapse
Affiliation(s)
- Fangyuan Hua
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| | - Weiyi Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Shuangqi Liu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xinran Miao
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Fenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Le Yu
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
- Ministry of Education Ecological Field Station for East Asia Migratory Birds, Tsinghua University, Beijing, China
- Tsinghua University (Department of Earth System Science)-Xi'an Institute of Surveying and Mapping Joint Research Center for Next-Generation Smart Mapping, Beijing, China
| | - Zhenrong Du
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
| | - Stefan Abrahamczyk
- Department of Botany, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Luis Alejandro Arias-Sosa
- Laboratorio de Ecología de Organismos (GEO-UPTC), Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Kinga Buda
- Department of Behavioural Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Michał Budka
- Department of Behavioural Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Stéphanie M Carrière
- Institut de Recherche pour le Développement, UMR SENS, IRD, CIRAD, Université Paul Valéry Montpellier 3, Université de Montpellier, Montpellier, France
| | - Richard B Chandler
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | | | - David O Chiawo
- Centre for Biodiversity Information Development, Strathmore University, Nairobi, Kenya
| | - Will Cresswell
- Centre of Biological Diversity, University of St Andrews, St Andrews, Scotland
| | - Alejandra Echeverri
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Eben Goodale
- Department of Health and Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Guohualing Huang
- School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | - Mark F Hulme
- Department of Life Sciences, Faculty of Science and Technology, University of the West Indies, St Augustine, Trinidad and Tobago
- British Trust for Ornithology, Norfolk, UK
| | - Richard L Hutto
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Titus S Imboma
- Ornithology Section, Zoology Department, National Museums of Kenya, Nairobi, Kenya
| | - Crinan Jarrett
- Department of Bird Migration, Swiss Ornithological Institute, Sempach, Switzerland
| | - Zhigang Jiang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Vassiliki I Kati
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - David I King
- Northern Research Station, USDA Forest Service, Amherst, MA, USA
| | - Primož Kmecl
- Group for Conservation Biology, DOPPS BirdLife Slovenia, Ljubljana, Slovenia
| | - Na Li
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, China
| | - Gábor L Lövei
- Institute of Applied Ecology, Fujian University of Agriculture and Forestry, Fuzhou, China
- HUN-REN-DE Anthropocene Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Leandro Macchi
- Instituto de Ecología Regional (IER), CONICET, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Ian MacGregor-Fors
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Emily A Martin
- Institute of Animal Ecology and Systematic Zoology, Justus Liebig University of Gießen, Giessen, Germany
| | - António Mira
- MED (Mediterranean Institute for Agriculture, Environment and Development), CHANGE (Global Change and Sustainability Institute) and UBC (Conservation Biology Lab), Department of Biology, School of Sciences and Technology, University of Évora, Évora, Portugal
| | - Federico Morelli
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Rubén Ortega-Álvarez
- Investigadoras e Investigadores por México del Consejo Nacional de Ciencia y Tecnología (CONACYT), Dirección Regional Occidente, Mexico City, Mexico
| | - Rui-Chang Quan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Pedro A Salgueiro
- MED (Mediterranean Institute for Agriculture, Environment and Development), CHANGE (Global Change and Sustainability Institute), Institute for Advanced Studies and Research and UBC (Conservation Biology Lab), University of Évora, Évora, Portugal
| | - Sara M Santos
- MED (Mediterranean Institute for Agriculture, Environment and Development), CHANGE (Global Change and Sustainability Institute), Institute for Advanced Studies and Research and UBC (Conservation Biology Lab), University of Évora, Évora, Portugal
| | | | | | | | - Rachakonda Sreekar
- Centre for Nature-based Climate Solutions, National University of Singapore, Singapore, Singapore
| | - Umesh Srinivasan
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - David S Wilcove
- School of Public and International Affairs and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Yuichi Yamaura
- Shikoku Research Center, Forestry and Forest Products Research Institute, Kochi, Japan
| | - Liping Zhou
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Paul R Elsen
- Global Conservation Program, Wildlife Conservation Society, Bronx, NY, USA
| |
Collapse
|
2
|
Quilodrán CS, Sandvig EM, Aguirre F, de Aguilar JR, Barroso O, Vásquez RA, Rozzi R. The extreme rainfall gradient of the Cape Horn Biosphere Reserve and its impact on forest bird richness. BIODIVERSITY AND CONSERVATION 2022; 31:613-627. [PMID: 35529023 PMCID: PMC9035007 DOI: 10.1007/s10531-022-02353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/24/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
A natural laboratory is a place supporting the conditions for hypothesis testing under non-anthropogenic settings. Located at the southern end of the Magellanic sub-Antarctic ecoregion in southwestern South America, the Cape Horn Biosphere Reserve (CHBR) has one of the most extreme rainfall gradients in the world. Subject to oceanic climate conditions, it is also characterized by moderate thermal fluctuations throughout the year. This makes it a unique natural laboratory for studying the effects of extreme rainfall variations on forest bird communities. Here, we monitor the bird species richness in the different forest types present in the CHBR. We found that species richness decreased with increasing precipitation, in which an increase of 100 mm in average annual precipitation showed about 1% decrease in species richness. Similar patterns were found among different forest types within the CHBR. These results provide a baseline to investigate the interactions between physical and biotic factors in a subpolar region that climatically contrasts with boreal forests, which is subject to continental climatic conditions. This research highlights the importance of ecological and ornithological long-term studies in the CHBR, which can contribute both to a higher resolution of the heterogeneity of climate changes in different regions of the world, and to orient conservation policies in the Magellanic sub-Antarctic ecoregion in the face of growing development pressures.
Collapse
Affiliation(s)
- Claudio S. Quilodrán
- Department of Biology and Biochemistry, University of Fribourg, Fribourg, Switzerland
- Department of Zoology, University of Oxford, OX 1 3PS Oxford, United Kingdom
- Cape Horn International Center, Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
| | - Erik M. Sandvig
- Cape Horn International Center, Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco Aguirre
- Cape Horn International Center, Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
- Centro de Investigación Gaia Antártica (CIGA), Universidad de Magallanes, Punta Arenas, Chile
| | - Juan Rivero de Aguilar
- Cape Horn International Center, Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
| | - Omar Barroso
- Cape Horn International Center, Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
| | - Rodrigo A. Vásquez
- Cape Horn International Center, Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ricardo Rozzi
- Cape Horn International Center, Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
- Sub-Antarctic Biocultural Conservation Program, Department of Philosophy and Religion & Department of Biological Sciences, University of North Texas, Denton, TX USA
| |
Collapse
|