1
|
Albuja‐Quintana M, Rivas‐Torres G, Rojas López KE, Asadobay P, Palacios Cuenca W, Vinueza G, Torres MDL. Preliminary insights of the genetic diversity and invasion pathways of Cedrela odorata in the Galapagos Islands, Ecuador. Ecol Evol 2024; 14:e11723. [PMID: 38988340 PMCID: PMC11236438 DOI: 10.1002/ece3.11723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
Cedrela odorata is considered the second most invasive tree species of the Galapagos Islands. Although it is listed in CITES Appendix II and there are population losses in mainland Ecuador, in Galapagos it is paradoxically a species of concern due to its invasive potential. Genetic studies can shed light on the invasion history of introduced species causing effects on unique ecosystems like the Galapagos. We analyzed nine microsatellite markers in C. odorata individuals from Galapagos and mainland Ecuador to describe the genetic diversity and population structure of C. odorata in the Galapagos and to explore the origin and invasion history of this species. The genetic diversity found for C. odorata in Galapagos (H e = 0.55) was lower than reported in the mainland (H e = 0.81), but higher than other invasive insular plant species, which could indicate multiple introductions. Our results suggest that Ecuador's northern Coastal region is the most likely origin of the Galapagos C. odorata, although further genomic studies, like Whole Genome Sequencing, Rad-Seq, and/or Whole Genome SNP analyses, are needed to confirm this finding. Moreover, according to our proposed pathway scenarios, C. odorata was first introduced to San Cristobal and/or Santa Cruz from mainland Ecuador. After these initial introductions, C. odorata appears to have arrived to Isabela and Floreana from either San Cristobal or Santa Cruz. Here, we report the first genetic study of C. odorata in the Galapagos and the first attempt to unravel the invasion history of this species. The information obtained in this research could support management and control strategies to lessen the impact that C. odorata has on the islands' local flora and fauna.
Collapse
Affiliation(s)
- Martina Albuja‐Quintana
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito (USFQ)QuitoEcuador
- Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de Quito USFQQuitoEcuador
| | - Gonzalo Rivas‐Torres
- Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de Quito USFQQuitoEcuador
- Galápagos Science CenterUniversidad San Francisco de QuitoSan CristobalEcuador
- University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de Quito USFQQuitoEcuador
| | - Karla E. Rojas López
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito (USFQ)QuitoEcuador
- Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de Quito USFQQuitoEcuador
| | - Pacarina Asadobay
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito (USFQ)QuitoEcuador
- Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de Quito USFQQuitoEcuador
| | | | - Génesis Vinueza
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito (USFQ)QuitoEcuador
- Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de Quito USFQQuitoEcuador
| | - Maria de Lourdes Torres
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito (USFQ)QuitoEcuador
- Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de Quito USFQQuitoEcuador
- Galápagos Science CenterUniversidad San Francisco de QuitoSan CristobalEcuador
- University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
2
|
Vicente S, Trindade H, Máguas C, Le Roux JJ. Genetic analyses reveal a complex introduction history of the globally invasive tree Acacia longifolia. NEOBIOTA 2023. [DOI: 10.3897/neobiota.82.87455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Acacia longifolia (Sydney golden wattle) is considered one of the most problematic plant invaders in Mediterranean-type ecosystems. In this study, we investigate the species’ invasion history by comparing the genetic diversity and structure of native (Australia) and several invasive range (Brazil, Portugal, South Africa, Spain, and Uruguay) populations and by modelling different introduction scenarios using these data. We sampled 272 A. longifolia individuals – 126 from different invasive ranges and 146 from the native range – from 41 populations. We genotyped all individuals at four chloroplast and 12 nuclear microsatellite markers. From these data we calculated diversity metrics, identified chloroplast haplotypes, and estimated population genetic structure based on Bayesian assignment tests. We used Approximate Bayesian Computation (ABC) models to infer the likely introduction history into each invaded country. In Australia, population genetic structure of A. longifolia appears to be strongly shaped by the Bass Strait and we identified two genetic clusters largely corresponding to mainland Australian and Tasmanian populations. We found invasive populations to represent a mixture of these clusters. Similar levels of genetic diversity were present in native and invasive ranges, indicating that invasive populations did not go through a genetic bottleneck. Bayesian assignment tests and chloroplast haplotype frequencies further suggested a secondary introduction event between South Africa and Portugal. However, ABC analyses could not confidently identify the native source(s) of invasive populations in these two countries, probably due to the known high propagule pressure that accompanied these introductions. ABC analyses identified Tasmania as the likely source of invasive populations in Brazil and Uruguay. A definitive native source for Spanish populations could also not be identified. This study shows that tracing the introduction history of A. longifolia is difficult, most likely because of the complexity associated with the extensive movement of the species around the world. Our findings should be considered when planning management and control efforts, such as biological control, in some invaded regions.
Collapse
|
3
|
Zamorano D, Labra FA, Vila I, Meier CI. Rivers as a potential dispersing agent of the invasive tree Acacia dealbata. REVISTA CHILENA DE HISTORIA NATURAL 2022. [DOI: 10.1186/s40693-022-00109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
The silver wattle Acacia dealbata is a fast-growing tree from Australia that has become naturalised in different regions of the world, attaining invasive status in most of them. In Chile, A. dealbata reaches large abundances along banks and floodplains of invaded fluvial systems, suggesting that rivers may act as a vector for seed dispersal. As hydrochory has not been documented previously in this species, the aim of this study is to evaluate the potential for water dispersal of seeds of this invasive tree along rivers.
Methods
Seed samples from rivers were collected at three sites along two A. dealbata-invaded rivers within the Cachapoal basin, central Chile. Number of seeds collected was contrasted versus hydraulic and local conditions with RDA. Seed buoyancy and sedimentation velocity were determined and compared between sites with an ANCOVA. Finally, the probability of seed germination after long periods of immersion in water was assessed, simulating transport conditions in the flow. Germination results were tested with a GLM.
Results
Results indicate that increasing abundance of A. dealbata seeds in the flow is related to the level of turbulence of the flow. Seeds display high floatability but their sedimentation velocity is high when they do sink. Finally, silver wattle seeds can germinate after long periods (many weeks) of immersion in water; however, their probability of germination depends to a large extent on whether seeds are scarified or not.
Conclusions
Based on the evidence collected, we suggest that the seeds of A. dealbata have the necessary traits to be dispersed by rivers, this being the first research testing this hypothesis. The success of hydrochory of A. dealbata would depend on river flow turbulence, and whether there are natural mechanisms for scarifying the seeds either before or during transport. The proposed methodology can be used to assess river hydrochory for any tree species.
Collapse
|
4
|
Effect of Life-History Traits and Habitat Condition on Genetic Diversity between Invasive and Native Plant Populations. DIVERSITY 2022. [DOI: 10.3390/d14121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Plant invasions have a huge impact on the health of ecosystems and human well-being. The invasion risk varies with the introduction pathway, the propagule pressure, and the genetic diversity of the founding population. We performed a systematic review and meta-analysis of 30 studies reporting the genetic diversity of 31 plant species in their invasive and native ranges. We evaluated if patterns of genetic diversity differ between ranges and whether these responses are influenced by life-history traits, hybridization, polyploidization, and habitat condition. We found that invasive populations had significantly lower genetic diversity and higher inbreeding than native populations. In fragmented and degraded habitats, the genetic diversity of invaders was lower, but inbreeding was not affected. Polyploid invaders with hybrid capacity also showed lower genetic diversity. Invasive herbs with vegetative propagation were more sensitive to the loss of genetic diversity and had higher levels of inbreeding. Our synthesis showed that the genetic response in the invaded range could result from historical processes, such as founder and bottleneck events. Traits such as selfing are more likely to preserve the signatures of founder events and influence the genetic diversity in invasive populations. Additionally, clonality seems to be the predominant reproduction system in the invaded range.
Collapse
|
5
|
Byrne D, Scheben A, Scott JK, Webber BL, Batchelor KL, Severn-Ellis AA, Gooden B, Bell KL. Genomics reveals the history of a complex plant invasion and improves the management of a biological invasion from the South African-Australian biotic exchange. Ecol Evol 2022; 12:e9179. [PMID: 36016815 PMCID: PMC9396708 DOI: 10.1002/ece3.9179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Many plants exchanged in the global redistribution of species in the last 200 years, particularly between South Africa and Australia, have become threatening invasive species in their introduced range. Refining our understanding of the genetic diversity and population structure of native and alien populations, introduction pathways, propagule pressure, naturalization, and initial spread, can transform the effectiveness of management and prevention of further introductions. We used 20,221 single nucleotide polymorphisms to reconstruct the invasion of a coastal shrub, Chrysanthemoides monilifera ssp. rotundata (bitou bush) from South Africa, into eastern Australia (EAU), and Western Australia (WAU). We determined genetic diversity and population structure across the native and introduced ranges and compared hypothesized invasion scenarios using Bayesian modeling. We detected considerable genetic structure in the native range, as well as differentiation between populations in the native and introduced range. Phylogenetic analysis showed the introduced samples to be most closely related to the southern-most native populations, although Bayesian analysis inferred introduction from a ghost population. We detected strong genetic bottlenecks during the founding of both the EAU and WAU populations. It is likely that the WAU population was introduced from EAU, possibly involving an unsampled ghost population. The number of private alleles and polymorphic SNPs successively decreased from South Africa to EAU to WAU, although heterozygosity remained high. That bitou bush remains an invasion threat in EAU, despite reduced genetic diversity, provides a cautionary biosecurity message regarding the risk of introduction of potentially invasive species via shipping routes.
Collapse
Affiliation(s)
- Dennis Byrne
- CSIRO Health & Biosecurity Floreat Western Australia Australia
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
| | - Armin Scheben
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory Cold Spring, Harbor New York USA
| | - John K Scott
- CSIRO Health & Biosecurity Floreat Western Australia Australia
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
| | - Bruce L Webber
- CSIRO Health & Biosecurity Floreat Western Australia Australia
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- Western Australian Biodiversity Science Institute Perth Western Australia Australia
| | | | - Anita A Severn-Ellis
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
| | - Ben Gooden
- CSIRO Health and Biosecurity Canberra Australian Capital Territory Australia
- Centre for Sustainable Ecosystem Solutions School of Earth, Atmospheric and Life Sciences, University of Wollongong Wollongong New South Wales Australia
| | - Karen L Bell
- CSIRO Health & Biosecurity Floreat Western Australia Australia
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
| |
Collapse
|
6
|
Vicente S, Máguas C, Richardson DM, Trindade H, Wilson JRU, Le Roux JJ. Highly diverse and highly successful: invasive Australian acacias have not experienced genetic bottlenecks globally. ANNALS OF BOTANY 2021; 128:149-157. [PMID: 33876193 PMCID: PMC8324033 DOI: 10.1093/aob/mcab053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Invasive species may undergo rapid evolution despite very limited standing genetic diversity. This so-called genetic paradox of biological invasions assumes that an invasive species has experienced (and survived) a genetic bottleneck and then underwent local adaptation in the new range. In this study, we test how often Australian acacias (genus Acacia), one of the world's most problematic invasive tree groups, have experienced genetic bottlenecks and inbreeding. METHODS We collated genetic data from 51 different genetic studies on Acacia species to compare genetic diversity between native and invasive populations. These studies analysed 37 different Acacia species, with genetic data from the invasive ranges of 11 species, and data from the native range for 36 species (14 of these 36 species are known to be invasive somewhere in the world, and the other 22 are not known to be invasive). KEY RESULTS Levels of genetic diversity are similar in native and invasive populations, and there is little evidence of invasive populations being extensively inbred. Levels of genetic diversity in native range populations also did not differ significantly between species that have and that do not have invasive populations. CONCLUSION We attribute our findings to the impressive movement, introduction effort and human usage of Australian acacias around the world.
Collapse
Affiliation(s)
- Sara Vicente
- Centro de Estudos do Ambiente e do Mar (CESAM), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Cristina Máguas
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - David M Richardson
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Helena Trindade
- Centro de Estudos do Ambiente e do Mar (CESAM), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - John R U Wilson
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| | - Johannes J Le Roux
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
7
|
Eyer PA, Blumenfeld AJ, Johnson LNL, Perdereau E, Shults P, Wang S, Dedeine F, Dupont S, Bagnères AG, Vargo EL. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Mol Ecol 2021; 30:3948-3964. [PMID: 34142394 DOI: 10.1111/mec.16022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022]
Abstract
As native ranges are often geographically structured, invasive species originating from a single source population only carry a fraction of the genetic diversity present in their native range. The invasion process is thus often associated with a drastic loss of genetic diversity resulting from a founder event. However, the fraction of diversity brought to the invasive range may vary under different invasion histories, increasing with the size of the propagule, the number of reintroduction events, and/or the total genetic diversity represented by the various source populations in a multiple-introduction scenario. In this study, we generated a SNP data set for the invasive termite Reticulitermes flavipes from 23 native populations in the eastern United States and six introduced populations throughout the world. Using population genetic analyses and approximate Bayesian computation random forest, we investigated its worldwide invasion history. We found a complex invasion pathway with multiple events out of the native range and bridgehead introductions from the introduced population in France. Our data suggest that extensive long-distance jump dispersal appears common in both the native and introduced ranges of this species, probably through human transportation. Overall, our results show that similar to multiple introduction events into the invasive range, admixture in the native range prior to invasion can potentially favour invasion success by increasing the genetic diversity that is later transferred to the introduced range.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA
| | | | - Laura N L Johnson
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA.,Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | | | - Phillip Shults
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA
| | - Shichen Wang
- Texas A&M Agrilife Genomics and Bioinformatics Service, College Station, TX, USA
| | | | - Simon Dupont
- IRBI, UMR 7261 CNRS-Université de Tours, Tours, France
| | - Anne-Geneviève Bagnères
- IRBI, UMR 7261 CNRS-Université de Tours, Tours, France.,CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, Montpellier, France
| | - Edward L Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA
| |
Collapse
|