1
|
Han Q, Du L, Zhu L, Yu D. Review of the Application of Dual Drug Delivery Nanotheranostic Agents in the Diagnosis and Treatment of Liver Cancer. Molecules 2023; 28:7004. [PMID: 37894483 PMCID: PMC10608862 DOI: 10.3390/molecules28207004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Liver cancer has high incidence and mortality rates and its treatment generally requires the use of a combination treatment strategy. Therefore, the early detection and diagnosis of liver cancer is crucial to achieving the best treatment effect. In addition, it is imperative to explore multimodal combination therapy for liver cancer treatment and the synergistic effect of two liver cancer treatment drugs while preventing drug resistance and drug side effects to maximize the achievable therapeutic effect. Gold nanoparticles are used widely in applications related to optical imaging, CT imaging, MRI imaging, biomarkers, targeted drug therapy, etc., and serve as an advanced platform for integrated application in the nano-diagnosis and treatment of diseases. Dual-drug-delivery nano-diagnostic and therapeutic agents have drawn great interest in current times. Therefore, the present report aims to review the effectiveness of dual-drug-delivery nano-diagnostic and therapeutic agents in the field of anti-tumor therapy from the particular perspective of liver cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qinghe Han
- Radiology Department, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (Q.H.); (L.D.); (L.Z.)
| | - Lianze Du
- Radiology Department, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (Q.H.); (L.D.); (L.Z.)
| | - Lili Zhu
- Radiology Department, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (Q.H.); (L.D.); (L.Z.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
| |
Collapse
|
2
|
Shi NQ, Cui XY, Zhou C, Tang N, Cui DX. Application of near-infrared fluorescence imaging in theranostics of gastrointestinal tumors. Gastroenterol Rep (Oxf) 2023; 11:goad055. [PMID: 37781571 PMCID: PMC10533422 DOI: 10.1093/gastro/goad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Gastrointestinal cancers have become an important cause of cancer-related death in humans. Improving the early diagnosis rate of gastrointestinal tumors and improving the effect of surgical treatment can significantly improve the survival rate of patients. The conventional diagnostic method is high-definition white-light endoscopy, which often leads to missed diagnosis. For surgical treatment, intraoperative tumor localization and post-operative anastomotic state evaluation play important roles in the effect of surgical treatment. As a new imaging method, near-infrared fluorescence imaging (NIRFI) has its unique advantages in the diagnosis and auxiliary surgical treatment of gastrointestinal tumors due to its high sensitivity and the ability to image deep tissues. In this review, we focus on the latest advances of NIRFI technology applied in early diagnosis of gastrointestinal tumors, identification of tumor margins, identification of lymph nodes, and assessment of anastomotic leakage. In addition, we summarize the advances of NIRFI systems such as macro imaging and micro imaging systems, and also clearly describe the application process of NIRFI from system to clinical application, and look into the prospect of NIRFI applied in the theranostics of gastrointestinal tumors.
Collapse
Affiliation(s)
- Nan-Qing Shi
- Department of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xin-Yuan Cui
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Cheng Zhou
- Department of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Ning Tang
- Department of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Da-Xiang Cui
- Department of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Engineering Center for Nanotechnology, Shanghai, P. R. China
| |
Collapse
|
3
|
Luo Q, Fan C, Ying W, Peng X, Hu Y, Luan Z, Ye S, Gong C, Huang Y, Xiao Y, Chen Y, Xing M, Wang L, Yang S. In Vivo Anchoring Bis-Pyrene Probe for Molecular Imaging of Early Gastric Cancer by Endoscopic Techniques. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203918. [PMID: 36437107 PMCID: PMC9896057 DOI: 10.1002/advs.202203918] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/17/2022] [Indexed: 06/16/2023]
Abstract
With the development of blue laser endoscopy (BLE) technique, it's often used to diagnose early gastric cancer (EGC) by the morphological changes of blood vessels through BLE. However, EGC is still not obvious to identify, resulting in a high rate of missed diagnosis. Molecular imaging can show the changes in early tumors at molecular level, which provides a possibility for diagnosing EGC. Therefore, developing a probe that visually monitors blood vessels of EGC under BLE is particularly necessary. Herein, a bis-pyrene (BP) based nanoprobe (BP-FFVLK-(PEG)-RGD, M1 ) is designed, which can target angiogenesis and self-assemble into fibers in situ, resulting in stable and long-term retention in tumor. Moreover, M1 probe can emit yellow-green fluorescence for imaging under BLE. M1 probe is confirmed to steadily remain in tumor for up to 96 hours in mice transplanted subcutaneously. In addition, the M1 probe is able to target angiogenesis for molecular imaging of isolated human gastric cancer tissue under BLE. Finally, M1 probe i.v. injected into primary gastric cancer model rabbits successfully highlighted the tumor site under BLE, which is confirmed by pathological analysis. It's the first time to develop a probe for diagnosing EGC by visualizing angiogenesis under BLE, showing great clinical significance.
Collapse
Affiliation(s)
- Qiang Luo
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqing City400037P. R. China
| | - Chaoqiang Fan
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqing City400037P. R. China
- Chongqing Municipality Clinical Research Center for GastroenterologyOffice of Science and Technology of ChongqingNo. 2 Xingai roadYubeiChongqing401147China
| | - Wang Ying
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqing City400037P. R. China
| | - Xue Peng
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqing City400037P. R. China
| | - Yiyang Hu
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqing City400037P. R. China
| | - Zhaohui Luan
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqing City400037P. R. China
| | - Shaosong Ye
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqing City400037P. R. China
| | - Chunli Gong
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqing City400037P. R. China
| | - Yu Huang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqing City400037P. R. China
| | - Yufeng Xiao
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqing City400037P. R. China
| | - Yang Chen
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqing City400037P. R. China
| | - Malcolm Xing
- Department of Mechanical Engineering, Biochemistry and Medical GeneticsUniversity of ManitobaWinnipegManitobaR3T 2N2Canada
| | - Lei Wang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, ZhongguancunBeijing100190China
| | - Shiming Yang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqing City400037P. R. China
- Chongqing Municipality Clinical Research Center for GastroenterologyOffice of Science and Technology of ChongqingNo. 2 Xingai roadYubeiChongqing401147China
| |
Collapse
|
4
|
Agrawal LS, Acharya S, Shukla S, Parekh YC. Future of Endoscopy in Inflammatory Bowel Diseases (IBDs). Cureus 2022; 14:e29567. [PMID: 36312686 PMCID: PMC9596090 DOI: 10.7759/cureus.29567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/25/2022] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal (GI) endoscopy has transformed over the years in scope, safety, accuracy, acceptability, and cost effectiveness of the clinical practice. There has been a reduction in the superiority of the endoscopic devices as innovations have taken place and increased the diagnostic values with certain limitations. There are particular difficulties in striking a balance between the development of new technology and the device's acceptance. The wide use of endoscopy for investigating GI lesions and diagnosis has led to an increase in more advanced methods and their broad application. It can simultaneously diagnose pre-malignant and malignant lesions, and newer interventions have made the biopsy specimen uptake possible. In this review article, we focus on the more recent roles, indications, applications, and usage of the innovative methods of endoscopy.
Collapse
|
5
|
Wang W, Wang J, Hong G, Mao L, Zhu N, Liu T. Methoxypolyethylene Glycol-Substituted Zinc Phthalocyanines for Multiple Tumor-Selective Fluorescence Imaging and Photodynamic Therapy. Biomacromolecules 2021; 22:4284-4294. [PMID: 34569232 DOI: 10.1021/acs.biomac.1c00855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Highly tumor-tissue-selective drugs are a prerequisite for accurate diagnosis and efficient photodynamic therapy (PDT) of tumors, but the currently used fluorescent dyes and photosensitizers generally lack the ability for high accumulation and precise localization in tumor tissues. Here we report that monomethoxy polyethylene glycol (MPEG)-modified zinc phthalocyanine (ZnPc) can be selectively accumulated in multiple tumor tissues, and that the selectivity is controlled by the chain length of MPEG. MPEG-monosubstituted ZnPcs with different chain lengths were synthesized, among which the shorter chain (mw < 2k)-modified ZnPc did not show tumor tissue selectivity, while MPEG2k-5k-substituted ZnPc could be rapidly and selectively accumulated in H22 tumor tissues in mice after intravenous injection. Especially, MPEG4k-Pc showed the best tumor tissue selectivity with a tumor/liver (T/L) ratio of 1.7-2.2 in HepG2, MDA-MB231, AGS, and HT-29 tumor-bearing mice. It also exhibited potent photodynamic therapy effects after one PDT treatment, and tumor growth was significantly inhibited in H22-bearing mice with an inhibition rate over 98% and no obvious toxicity. Consequently, MPEG-modified ZnPc could serve as a potential platform for selective fluorescence imaging and photodynamic therapy of multiple tumors.
Collapse
Affiliation(s)
- Wenzhi Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jiawen Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Lina Mao
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Na Zhu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
6
|
Tang Y, Anandasabapathy S, Richards‐Kortum R. Advances in optical gastrointestinal endoscopy: a technical review. Mol Oncol 2021; 15:2580-2599. [PMID: 32915503 PMCID: PMC8486567 DOI: 10.1002/1878-0261.12792] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/23/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Optical endoscopy is the primary diagnostic and therapeutic tool for management of gastrointestinal (GI) malignancies. Most GI neoplasms arise from precancerous lesions; thus, technical innovations to improve detection and diagnosis of precancerous lesions and early cancers play a pivotal role in improving outcomes. Over the last few decades, the field of GI endoscopy has witnessed enormous and focused efforts to develop and translate accurate, user-friendly, and minimally invasive optical imaging modalities. From a technical point of view, a wide range of novel optical techniques is now available to probe different aspects of light-tissue interaction at macroscopic and microscopic scales, complementing white light endoscopy. Most of these new modalities have been successfully validated and translated to routine clinical practice. Herein, we provide a technical review of the current status of existing and promising new optical endoscopic imaging technologies for GI cancer screening and surveillance. We summarize the underlying principles of light-tissue interaction, the imaging performance at different scales, and highlight what is known about clinical applicability and effectiveness. Furthermore, we discuss recent discovery and translation of novel molecular probes that have shown promise to augment endoscopists' ability to diagnose GI lesions with high specificity. We also review and discuss the role and potential clinical integration of artificial intelligence-based algorithms to provide decision support in real time. Finally, we provide perspectives on future technology development and its potential to transform endoscopic GI cancer detection and diagnosis.
Collapse
Affiliation(s)
- Yubo Tang
- Department of BioengineeringRice UniversityHoustonTXUSA
| | | | | |
Collapse
|
7
|
Ahmed S, Kreft A, Chowdhury EH, Hossain SM, Galle PR, Neumann H. Molecular endoscopic imaging for the detection of Barrett's metaplasia using biodegradable inorganic nanoparticles: An ex-vivo pilot study on human tissue. PLoS One 2020; 15:e0239814. [PMID: 33002048 PMCID: PMC7529275 DOI: 10.1371/journal.pone.0239814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND STUDY AIMS Despite major technical advancements, endoscopic surveillance for detecting premalignant lesions in Barrett's esophagus is challenging because of their flat appearance with only subtle morphological changes. Molecular endoscopic imaging (MEI) using nanoparticles (NPs), coupled with fluorescently labeled antibody permits visualization of disease-specific molecular alterations. The aim of this ex vivo study was to assess the diagnostic applicability of MEI with NPs to detect Barrett's metaplasia. PATIENTS AND METHODS Seven patients undergoing endoscopic surveillance of known Barrett's esophagus were recruited. Freshly resected biopsy specimens were incubated with NPs coupled with FITC labeled Muc-2 antibodies and examined with MEI. Fluorescence intensity from Barrett's mucosa and control specimens were compared, followed by histological confirmation. RESULTS Fluorescence signals, indicating the presence of goblet cells, were noted for traditional MEI using Muc-2 antibodies in Barrett's intestinal metaplasia. Significantly stronger fluorescence signals were achieved with NPs coupled with FITC-conjugated Muc-2 antibodies. The results of MEI with NPs for the prediction of Barrett's metaplasia correlated with the final histopathological examination in all the cases. CONCLUSIONS Highly-specific NPs detected Barrett's metaplasia more efficiently than conventional MEI in this first feasibility study. MEI was as effective as standard histopathology for identifying Muc-2 containing goblet cells for diagnosis of Barrett's metaplasia. (DRKS-ID: DRKS00017747).
Collapse
Affiliation(s)
- Shakil Ahmed
- Inner Medicine, University Medical Centre, Mainz, Germany
| | - Andreas Kreft
- Institute of Pathology, University Medical Centre, Mainz, Germany
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Sultana Mehbuba Hossain
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Peter R. Galle
- Inner Medicine, University Medical Centre, Mainz, Germany
| | - Helmut Neumann
- Inner Medicine, University Medical Centre, Mainz, Germany
- * E-mail:
| |
Collapse
|
8
|
Noori MS, Bodle SJ, Showalter CA, Streator ES, Drozek DS, Burdick MM, Goetz DJ. Sticking to the Problem: Engineering Adhesion in Molecular Endoscopic Imaging. Cell Mol Bioeng 2020; 13:113-124. [PMID: 32175025 DOI: 10.1007/s12195-020-00609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/03/2020] [Indexed: 12/24/2022] Open
Abstract
Cancers of the digestive tract cause nearly one quarter of the cancer deaths worldwide, and nearly half of these are due to cancers of the esophagus and colon. Early detection of cancer significantly increases the rate of survival, and thus it is critical that cancer within these organs is detected early. In this regard, endoscopy is routinely used to screen for transforming/cancerous (i.e. dysplastic to fully cancerous) tissue. Numerous studies have revealed that the biochemistry of the luminal surface of such tissue within the colon and esophagus becomes altered throughout disease progression. Molecular endoscopic imaging (MEI), an emerging technology, seeks to exploit these changes for the early detection of cancer. The general approach for MEI is as follows: the luminal surface of an organ is exposed to molecular ligands, or particulate probes bearing a ligand, cognate to biochemistry unique to pre-cancerous/cancerous tissue. After a wash, the tissue is imaged to determine the presence of the probes. Detection of the probes post-washing suggests pathologic tissue. In the current review we provide a succinct, but extensive, review of ligands and target moieties that could be, or are currently being investigated, as possible cognate chemistries for MEI. This is followed by a review of the biophysics that determines, in large part, the success of a particular MEI design. The work draws an analogy between MEI and the well-advanced field of cell adhesion and provides a road map for engineering MEI to achieve assays that yield highly selective recognition of transforming/cancerous tissue in situ.
Collapse
Affiliation(s)
- Mahboubeh S Noori
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA
| | - Sarah J Bodle
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA.,Biomedical Engineering Program, Ohio University, Athens, OH 45701 USA
| | - Christian A Showalter
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA
| | - Evan S Streator
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA
| | - David S Drozek
- Department of Specialty Medicine, Ohio University, Athens, OH 45701 USA
| | - Monica M Burdick
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA.,Biomedical Engineering Program, Ohio University, Athens, OH 45701 USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
| | - Douglas J Goetz
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA.,Biomedical Engineering Program, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
9
|
Singh N, Kumar P, Riaz U. Applications of near infrared and surface enhanced Raman scattering techniques in tumor imaging: A short review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117279. [PMID: 31234091 DOI: 10.1016/j.saa.2019.117279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/08/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Imaging technologies play a vital role in clinical oncology and have undergone massive growth over the past few decades. Research in the field of tumor imaging and biomedical diagnostics requires early detection of physiological alterations so as to provide curative treatment in real time. The objective of this review is to provide an insight about near infrared fluorescence (NIRF) and surface enhanced Raman scattering (SERS) imaging techniques that can be used to expand their capabilities for the early detection and diagnosis of cancer cells. Basic setup, principle and working of the instruments has been provided and common NIRF imaging agents as well as SERS tags are also discussed besides the analytical advantages/disadvantages of these techniques. This review can help researchers working in the field of molecular imaging to design cost effective fluorophores and SERS tags to overcome the limitations of both NIRF as well as SERS imaging technologies.
Collapse
Affiliation(s)
- Neetika Singh
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India; Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prabhat Kumar
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India; Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ufana Riaz
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India; Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
10
|
Ahmed S, Galle PR, Neumann H. Molecular endoscopic imaging: the future is bright. Ther Adv Gastrointest Endosc 2019; 12:2631774519867175. [PMID: 31517311 PMCID: PMC6724493 DOI: 10.1177/2631774519867175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
The prediction and final survival rate of gastrointestinal cancers are dependent on the stage of disease. The ideal would be to detect those gastrointestinal lesions at early stage or even premalignant forms which are difficult to detect by conventional endoscopy with white light optical imaging as they show minimum or no changes in morphological characteristics and are thus left untreated. The introduction of molecular imaging has greatly changed the pattern for detecting gastrointestinal lesions from purely macroscopic structural imaging to the molecular level. It allows microscopic examination of the gastrointestinal mucosa with endoscopy after the topical or systemic application of molecular probes. In recent years, major advancements in endoscopic instruments and specific molecular probes have been achieved. This review focuses on the current status of endoscopic imaging and highlights the application of molecular imaging in gastrointestinal and hepatic disease in the context of diagnosis and therapy based on recently published literature in this field. We also discuss the challenges of molecular endoscopic imaging, its future directions and potential that could have a tremendous impact on endoscopic research and clinical practice in future.
Collapse
Affiliation(s)
- Shakil Ahmed
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter R Galle
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Helmut Neumann
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Preparation and SPECT imaging of the novel Anxa 1-targeted probe 99mTc-p-SCN-Bn-DTPA-GGGRDN-IF7. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06500-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|