1
|
Maeda Y, Kudo SE, Kuroki T, Iacucci M. Automated Endoscopic Diagnosis in IBD: The Emerging Role of Artificial Intelligence. Gastrointest Endosc Clin N Am 2025; 35:213-233. [PMID: 39510689 DOI: 10.1016/j.giec.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The emerging role of artificial intelligence (AI) in automated endoscopic diagnosis represents a significant advancement in managing inflammatory bowel disease (IBD). AI technologies are increasingly being applied to endoscopic imaging to enhance the diagnosis, prediction of severity, and progression of IBD and dysplasia-associated colitis surveillance. These AI-assisted endoscopy aim to improve diagnostic accuracy, reduce variability of endoscopy imaging interpretations, and assist clinicians in decision-making processes. By leveraging AI, healthcare providers have the potential to offer more personalized and effective treatments, ultimately improving patient outcomes in IBD care.
Collapse
Affiliation(s)
- Yasuharu Maeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan; APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork T12 YT20, Ireland.
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Takanori Kuroki
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
2
|
Nardone OM, Maeda Y, Iacucci M. AI and endoscopy/histology in UC: the rise of machine. Therap Adv Gastroenterol 2024; 17:17562848241275294. [PMID: 39435049 PMCID: PMC11491880 DOI: 10.1177/17562848241275294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 10/23/2024] Open
Abstract
The gap between endoscopy and histology is getting closer with the introduction of sophisticated endoscopic technologies. Furthermore, unprecedented advances in artificial intelligence (AI) have enabled objective assessment of endoscopy and digital pathology, providing accurate, consistent, and reproducible evaluations of endoscopic appearance and histologic activity. These advancements result in improved disease management by predicting treatment response and long-term outcomes. AI will also support endoscopy in raising the standard of clinical trial study design by facilitating patient recruitment and improving the validity of endoscopic readings and endoscopy quality, thus overcoming the subjective variability in scoring. Accordingly, AI will be an ideal adjunct tool for enhancing, complementing, and improving our understanding of ulcerative colitis course. This review explores promising AI applications enabled by endoscopy and histology techniques. We further discuss future directions, envisioning a bright future where AI technology extends the frontiers beyond human limits and boundaries.
Collapse
Affiliation(s)
- Olga Maria Nardone
- Division of Gastroenterology, Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Yasuharu Maeda
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Marietta Iacucci
- Mercy/Cork University Hospitals, Room 1.07, Clinical Sciences Building, Cork, Ireland
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork T12YT20, Ireland
| |
Collapse
|
3
|
Yamamoto N, Urabe Y, Nakahara H, Nakamura T, Shimizu D, Konishi H, Ishibashi K, Ariyoshi M, Miyamoto R, Mizuno J, Takasago T, Ishikawa A, Tsuboi A, Tanaka H, Yamashita K, Hiyama Y, Kishida Y, Takigawa H, Kuwai T, Arihiro K, Shimamoto F, Oka S. Genetic Analysis of Biopsy Tissues from Colorectal Tumors in Patients with Ulcerative Colitis. Cancers (Basel) 2024; 16:3271. [PMID: 39409892 PMCID: PMC11475702 DOI: 10.3390/cancers16193271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Colorectal neoplasia developing from ulcerative colitis mucosa (CRNUC) can be divided into ulcerative colitis-associated neoplasia (UCAN) and non-UCAN; however, it is often difficult to distinguish UCAN from non-UCAN during a biopsy diagnosis. We investigated whether a genomic analysis could improve the diagnostic accuracy of UCAN using biopsy specimens. METHODS In step 1, 14 CRNUCs were used to examine whether the genomic landscape of biopsy and resection specimens matched. In step 2, we investigated the relationship between the genomic landscapes and the pathological diagnosis of 26 CRNUCs. The cancer genome was analyzed by deep sequencing using a custom panel of 27 genes found to be mutated in our previous CRNUC analysis. RESULTS In step 1, of the 27 candidate genes, 14 were mutated. The concordance rate of the pathogenic mutations in these 14 genes between the biopsy and resection specimens was 29% (4/14), while that of the pathogenic mutations in TP53 and KRAS was 79% (11/14). In step 2, the pathological diagnosis of biopsy specimens using only hematoxylin and eosin (HE) staining had a sensitivity of 33% and an accuracy of 38% for UCAN diagnosis. On the other hand, the combination of the HE pathology and p53 immunohistochemical staining had a sensitivity of 73% and an accuracy of 85% for UCAN diagnosis, while the combination of HE staining and a TP53 mutation had a sensitivity of 87% and an accuracy of 88% for UCAN diagnosis. CONCLUSIONS An evaluation of TP53 mutations in biopsy specimens may be useful for diagnosing UCAN. However, further studies with larger sample sizes are required before this can be applied in clinical practice.
Collapse
Affiliation(s)
- Noriko Yamamoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Yuji Urabe
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Hikaru Nakahara
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima 734-8551, Japan;
| | - Takeo Nakamura
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Daisuke Shimizu
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Hirona Konishi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Kazuki Ishibashi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Misa Ariyoshi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Ryo Miyamoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Junichi Mizuno
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Takeshi Takasago
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Akira Ishikawa
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Akiyoshi Tsuboi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Hidenori Tanaka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Ken Yamashita
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Yuichi Hiyama
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, Hiroshima 734-8551, Japan;
| | - Yoshihiro Kishida
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Hidehiko Takigawa
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Toshio Kuwai
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
- Gastrointestinal Endoscopy and Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima 734-8551, Japan;
| | - Fumio Shimamoto
- Faculty of Health Sciences, Hiroshima Cosmopolitan University, Hiroshima 734-0014, Japan;
| | - Shiro Oka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| |
Collapse
|
4
|
Kuroki T, Maeda Y, Kudo SE, Ogata N, Iacucci M, Takishima K, Ide Y, Shibuya T, Semba S, Kawashima J, Kato S, Ogawa Y, Ichimasa K, Nakamura H, Hayashi T, Wakamura K, Miyachi H, Baba T, Nemoto T, Ohtsuka K, Misawa M. A novel artificial intelligence-assisted "vascular healing" diagnosis for prediction of future clinical relapse in patients with ulcerative colitis: a prospective cohort study (with video). Gastrointest Endosc 2024; 100:97-108. [PMID: 38215859 DOI: 10.1016/j.gie.2024.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND AND AIMS Image-enhanced endoscopy has attracted attention as a method for detecting inflammation and predicting outcomes in patients with ulcerative colitis (UC); however, the procedure requires specialist endoscopists. Artificial intelligence (AI)-assisted image-enhanced endoscopy may help nonexperts provide objective accurate predictions with the use of optical imaging. We aimed to develop a novel AI-based system using 8853 images from 167 patients with UC to diagnose "vascular-healing" and establish the role of AI-based vascular-healing for predicting the outcomes of patients with UC. METHODS This open-label prospective cohort study analyzed data for 104 patients with UC in clinical remission. Endoscopists performed colonoscopy using the AI system, which identified the target mucosa as AI-based vascular-active or vascular-healing. Mayo endoscopic subscore (MES), AI outputs, and histologic assessment were recorded for 6 colorectal segments from each patient. Patients were followed up for 12 months. Clinical relapse was defined as a partial Mayo score >2 RESULTS: The clinical relapse rate was significantly higher in the AI-based vascular-active group (23.9% [16/67]) compared with the AI-based vascular-healing group (3.0% [1/33)]; P = .01). In a subanalysis predicting clinical relapse in patients with MES ≤1, the area under the receiver operating characteristic curve for the combination of complete endoscopic remission and vascular healing (0.70) was increased compared with that for complete endoscopic remission alone (0.65). CONCLUSIONS AI-based vascular-healing diagnosis system may potentially be used to provide more confidence to physicians to accurately identify patients in remission of UC who would likely relapse rather than remain stable.
Collapse
Affiliation(s)
- Takanori Kuroki
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Yasuharu Maeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan; APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Noriyuki Ogata
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Kazumi Takishima
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Yutaro Ide
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Tomoya Shibuya
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Shigenori Semba
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Jiro Kawashima
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Shun Kato
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Yushi Ogawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Katsuro Ichimasa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Hiroki Nakamura
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Takemasa Hayashi
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Kunihiko Wakamura
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Hideyuki Miyachi
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Toshiyuki Baba
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Tetsuo Nemoto
- Department of Diagnostic Pathology and Laboratory Medicine, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Kazuo Ohtsuka
- Department of Endoscopy, Tokyo Medical and Dental University, Medical Hospital, Tokyo, Japan
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
Maeda Y, Kudo SE, Santacroce G, Ogata N, Misawa M, Iacucci M. Artificial intelligence-assisted colonoscopy to identify histologic remission and predict the outcomes of patients with ulcerative colitis: A systematic review. Dig Liver Dis 2024; 56:1119-1125. [PMID: 38643020 DOI: 10.1016/j.dld.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
This systematic review evaluated the current status of AI-assisted colonoscopy to identify histologic remission and predict the clinical outcomes of patients with ulcerative colitis. The use of artificial intelligence (AI) has increased substantially across several medical fields, including gastrointestinal endoscopy. Evidence suggests that it may be helpful to predict histologic remission and relapse, which would be beneficial because current histological diagnosis is limited by the inconvenience of obtaining biopsies and the high cost and time-intensiveness of pathological diagnosis. MEDLINE and the Cochrane Central Register of Controlled Trials were searched for studies published between January 1, 2000, and October 31, 2023. Nine studies fulfilled the selection criteria and were included; five evaluated the prediction of histologic remission, two assessed the prediction of clinical outcomes, and two evaluated both. Seven were prospective observational or cohort studies, while two were retrospective observational studies. No randomized controlled trials were identified. AI-assisted colonoscopy demonstrated sensitivity between 65 %-98 % and specificity values of 80 %-97 % for identifying histologic remission. Furthermore, it was able to predict future relapse in patients with ulcerative colitis. However, several challenges and barriers still exist to its routine clinical application, which should be overcome before the true potential of AI-assisted colonoscopy can be fully realized.
Collapse
Affiliation(s)
- Yasuharu Maeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan; APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, T12 YT20, Ireland.
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Giovanni Santacroce
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, T12 YT20, Ireland
| | - Noriyuki Ogata
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
6
|
Ko HM. Histopathological Evaluation of Pouch Neoplasia in IBD and Familial Adenomatous Polyposis. Dis Colon Rectum 2024; 67:S91-S98. [PMID: 38422398 DOI: 10.1097/dcr.0000000000003320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND IPAA is often required for patients with ulcerative colitis or familial adenomatous polyposis after colectomy. This procedure reduces but does not completely eliminate the risk of neoplasia. OBJECTIVE This study focuses on the histopathology of neoplasia in the ileal pouch, rectal cuff, and anal transition zone. DATA SOURCES We performed a MEDLINE search for English-language studies published between 1981 and 2022 using the PubMed search engine. The terms "ileal pouch-anal anastomosis," "pouchitis," "pouch dysplasia," "pouch lymphoma," "pouch squamous cell carcinoma," "pouch adenocarcinoma," "pouch neoplasia," "dysplasia of rectal cuff," and "colitis-associated dysplasia" were used. STUDY SELECTION Human studies of neoplasia occurring in the pouch and para-pouch were selected, and the full text was reviewed. Comparisons were made within and across studies, with key concepts selected for inclusion in this article. CONCLUSIONS Neoplasia in the pouch is a rare complication in patients with IPAA. Annual endoscopic surveillance is recommended for familial adenomatous polyposis patients and ulcerative colitis patients with a history of prior dysplasia or carcinoma. In familial adenomatous polyposis, dysplastic polyps of the pouch are visible and readily amenable to endoscopic removal; however, glandular dysplasia in the setting of ulcerative colitis may be invisible on endoscopy. Therefore, random biopsies and adequate tissue sampling of the pouch and rectal cuff are recommended in this setting. The histological diagnosis of IBD-associated dysplasia can be challenging and should be confirmed by at least 1 expert GI pathologist. See video from the symposium.
Collapse
Affiliation(s)
- Huaibin Mabel Ko
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
7
|
Rey JF. As how artificial intelligence is revolutionizing endoscopy. Clin Endosc 2024; 57:302-308. [PMID: 38454543 PMCID: PMC11133999 DOI: 10.5946/ce.2023.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 03/09/2024] Open
Abstract
With incessant advances in information technology and its implications in all domains of our lives, artificial intelligence (AI) has emerged as a requirement for improved machine performance. This brings forth the query of how this can benefit endoscopists and improve both diagnostic and therapeutic endoscopy in each part of the gastrointestinal tract. Additionally, it also raises the question of the recent benefits and clinical usefulness of this new technology in daily endoscopic practice. There are two main categories of AI systems: computer-assisted detection (CADe) for lesion detection and computer-assisted diagnosis (CADx) for optical biopsy and lesion characterization. Quality assurance is the next step in the complete monitoring of high-quality colonoscopies. In all cases, computer-aided endoscopy is used, as the overall results rely on the physician. Video capsule endoscopy is a unique example in which a computer operates a device, stores multiple images, and performs an accurate diagnosis. While there are many expectations, we need to standardize and assess various software packages. It is important for healthcare providers to support this new development and make its use an obligation in daily clinical practice. In summary, AI represents a breakthrough in digestive endoscopy. Screening for gastric and colonic cancer detection should be improved, particularly outside expert centers. Prospective and multicenter trials are mandatory before introducing new software into clinical practice.
Collapse
Affiliation(s)
- Jean-Francois Rey
- Institut Arnaut Tzanck Gastrointestinal Unt, Saint Laurent du Var, France
| |
Collapse
|
8
|
Maeda Y, Kudo SE, Iacucci M. Ultrahigh magnification endoscopy in inflammatory bowel disease: How do we bridge the gap between research and practice? Dig Endosc 2024; 36:290-291. [PMID: 37737479 DOI: 10.1111/den.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Affiliation(s)
- Yasuharu Maeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Nagai M, Suzuki S, Minato Y, Ishibashi F, Mochida K, Ohata K, Morishita T. Detecting colorectal lesions with image-enhanced endoscopy: an updated review from clinical trials. Clin Endosc 2023; 56:553-562. [PMID: 37491990 PMCID: PMC10565430 DOI: 10.5946/ce.2023.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 07/27/2023] Open
Abstract
Colonoscopy plays an important role in reducing the incidence and mortality of colorectal cancer by detecting adenomas and other precancerous lesions. Image-enhanced endoscopy (IEE) increases lesion visibility by enhancing the microstructure, blood vessels, and mucosal surface color, resulting in the detection of colorectal lesions. In recent years, various IEE techniques have been used in clinical practice, each with its unique characteristics. Numerous studies have reported the effectiveness of IEE in the detection of colorectal lesions. IEEs can be divided into two broad categories according to the nature of the image: images constructed using narrowband wavelength light, such as narrowband imaging and blue laser imaging/blue light imaging, or color images based on white light, such as linked color imaging, texture and color enhancement imaging, and i-scan. Conversely, artificial intelligence (AI) systems, such as computer-aided diagnosis systems, have recently been developed to assist endoscopists in detecting colorectal lesions during colonoscopy. To better understand the features of each IEE, this review presents the effectiveness of each type of IEE and their combination with AI for colorectal lesion detection by referencing the latest research data.
Collapse
Affiliation(s)
- Mizuki Nagai
- Department of Gastroenterology, International University of Health and Welfare Ichikawa Hospital, Chiba, Japan
| | - Sho Suzuki
- Department of Gastroenterology, International University of Health and Welfare Ichikawa Hospital, Chiba, Japan
| | - Yohei Minato
- Department of Gastrointestinal Endoscopy, NTT Medical Center Tokyo, Tokyo, Japan
| | - Fumiaki Ishibashi
- Department of Gastroenterology, International University of Health and Welfare Ichikawa Hospital, Chiba, Japan
| | - Kentaro Mochida
- Department of Gastroenterology, International University of Health and Welfare Ichikawa Hospital, Chiba, Japan
| | - Ken Ohata
- Department of Gastrointestinal Endoscopy, NTT Medical Center Tokyo, Tokyo, Japan
| | - Tetsuo Morishita
- Department of Gastroenterology, International University of Health and Welfare Ichikawa Hospital, Chiba, Japan
| |
Collapse
|
10
|
Rey JF. Artificial intelligence in digestive endoscopy: recent advances. Curr Opin Gastroenterol 2023:00001574-990000000-00089. [PMID: 37522929 DOI: 10.1097/mog.0000000000000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
PURPOSE OF REVIEW With the incessant advances in information technology and its implications in all domains of our life, artificial intelligence (AI) started to emerge as a need for better machine performance. How it can help endoscopists and what are the areas of interest in improving both diagnostic and therapeutic endoscopy in each part of the gastrointestinal (GI) tract. What are the recent benefits and clinical usefulness of this new technology in daily endoscopic practice. RECENT FINDINGS The two main AI systems categories are computer-assisted detection 'CADe' for lesion detection and computer-assisted diagnosis 'CADx' for optical biopsy and lesion characterization. Multiple softwares are now implemented in endoscopy practice. Other AI systems offer therapeutic assistance such as lesion delineation for complete endoscopic resection or prediction of possible lymphanode after endoscopic treatment. Quality assurance is the coming step with complete monitoring of high-quality colonoscopy. In all cases it is a computer-aid endoscopy as the overall result rely on the physician. Video capsule endoscopy is the unique example were the computer conduct the device, store multiple images, and perform accurate diagnosis. SUMMARY AI is a breakthrough in digestive endoscopy. Screening gastric and colonic cancer detection should be improved especially outside of expert's centers. Prospective and multicenter trials are mandatory before introducing new software in clinical practice.
Collapse
Affiliation(s)
- Jean-Francois Rey
- Arnault Tzanck Institute, 116 rue du commandant Cahuzac, Saint Laurent du var, France
| |
Collapse
|
11
|
Lenti MV, Scribano ML, Biancone L, Ciccocioppo R, Pugliese D, Pastorelli L, Fiorino G, Savarino E, Caprioli FA, Ardizzone S, Fantini MC, Tontini GE, Orlando A, Sampietro GM, Sturniolo GC, Monteleone G, Vecchi M, Kohn A, Daperno M, D’Incà R, Corazza GR, Di Sabatino A. Personalize, participate, predict, and prevent: 4Ps in inflammatory bowel disease. Front Med (Lausanne) 2023; 10:1031998. [PMID: 37113615 PMCID: PMC10126747 DOI: 10.3389/fmed.2023.1031998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a complex, immune-mediated, disorder which leads to several gastrointestinal and systemic manifestations determining a poor quality of life, disability, and other negative health outcomes. Our knowledge of this condition has greatly improved over the last few decades, and a comprehensive management should take into account both biological (i.e., disease-related, patient-related) and non-biological (i.e., socioeconomic, cultural, environmental, behavioral) factors which contribute to the disease phenotype. From this point of view, the so called 4P medicine framework, including personalization, prediction, prevention, and participation could be useful for tailoring ad hoc interventions in IBD patients. In this review, we discuss the cutting-edge issues regarding personalization in special settings (i.e., pregnancy, oncology, infectious diseases), patient participation (i.e., how to communicate, disability, tackling stigma and resilience, quality of care), disease prediction (i.e., faecal markers, response to treatments), and prevention (i.e., dysplasia through endoscopy, infections through vaccinations, and post-surgical recurrence). Finally, we provide an outlook discussing the unmet needs for implementing this conceptual framework in clinical practice.
Collapse
Affiliation(s)
- Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | | | - Livia Biancone
- Unit of Gastroenterology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi and University of Verona, Verona, Italy
| | - Daniela Pugliese
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Pastorelli
- Liver and Gastroenterology Unit, ASST Santi Paolo e Carlo, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Gionata Fiorino
- IBD Unit, Ospedale San Camillo-Forlanini, Rome, Italy
- Department of Gastroenterology, San Raffaele Hospital and Vita-Salute San Raffaele University,, Milan, Italy
| | - Edoardo Savarino
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Flavio Andrea Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Cà Granda, Ospedale Maggiore Policlinico and Università degli Studi di Milano, Milan, Italy
| | - Sandro Ardizzone
- Gastroenterology and Digestive Endoscopy Unit, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Massimo Claudio Fantini
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
- Gastroenterology Unit, Azienda Ospedaliero-Universitaria (AOU) di Cagliari, Cagliari, Italy
| | - Gian Eugenio Tontini
- Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Ambrogio Orlando
- Inflammatory Bowel Disease Unit, Azienda Ospedaliera Ospedali Riuniti "Villa Sofia-Cervello" Palermo, Palermo, Italy
| | | | - Giacomo Carlo Sturniolo
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Giovanni Monteleone
- Unit of Gastroenterology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Cà Granda, Ospedale Maggiore Policlinico and Università degli Studi di Milano, Milan, Italy
| | - Anna Kohn
- Gastroenterology Operative Unit, Azienda Ospedaliera San Camillo-Forlanini FR, Rome, Italy
| | - Marco Daperno
- Division of Gastroenterology, Ospedale Ordine Mauriziano di Torino, Turin, Italy
| | - Renata D’Incà
- Department of Gastroenterology, San Raffaele Hospital and Vita-Salute San Raffaele University,, Milan, Italy
| | - Gino Roberto Corazza
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| |
Collapse
|