1
|
Zheng Y, Zhang J, Yang Y, Xu M. Neural representation of sensorimotor features in language-motor areas during auditory and visual perception. Commun Biol 2025; 8:41. [PMID: 39799186 PMCID: PMC11724955 DOI: 10.1038/s42003-025-07466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
Speech processing involves a complex interplay between sensory and motor systems in the brain, essential for early language development. Recent studies have extended this sensory-motor interaction to visual word processing, emphasizing the connection between reading and handwriting during literacy acquisition. Here we show how language-motor areas encode motoric and sensory features of language stimuli during auditory and visual perception, using functional magnetic resonance imaging (fMRI) combined with representational similarity analysis. Chinese-speaking adults completed tasks involving the perception of spoken syllables and written characters, alongside syllable articulation and finger writing tasks to localize speech-motor and writing-motor areas. We found that both language-motor and sensory areas generally encode production-related motoric features across modalities, indicating cooperative interactions between motor and sensory systems. Notably, sensory encoding within sensorimotor areas was observed during auditory speech perception, but not in visual character perception. These findings underscore the dual encoding capacities of language-motor areas, revealing both shared and distinct neural representation patterns across modalities, which may be linked to innate sensory-motor mechanisms and modality-specific processing demands. Our results shed light on the sensorimotor integration mechanisms underlying language perception, highlighting the importance of a cross-modality perspective.
Collapse
Affiliation(s)
- Yuanyi Zheng
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Jianfeng Zhang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yang Yang
- Center for Brain Science and Learning Difficulties, Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Min Xu
- School of Psychology, Shenzhen University, Shenzhen, China.
| |
Collapse
|
2
|
Ben-Ami S, Buaron B, Yaron O, Keane K, Sun VH, Phillips F, Friedman J, Sinha P, Mukamel R. What the visual system can learn from the non-dominant hand: The effect of graphomotor engagement on visual discrimination. Mem Cognit 2025; 53:325-340. [PMID: 39500856 PMCID: PMC11779777 DOI: 10.3758/s13421-024-01628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 01/30/2025]
Abstract
Previous studies have demonstrated that engaging in graphomotor activity for creating graphemes can enhance their subsequent visual discrimination. This suggests a positive influence of the motor system on visual learning. However, existing studies have emphasized the dominant hand, which is superiorly dexterous in fine-motor movements. This near-exclusive focus prompts the inquiry of whether the observed perceptual facilitation is a general characteristic of the motor system, or specific to pathways controlling the skilled over-trained dominant hand. Furthermore, the mechanistic underpinning of visual facilitation from graphomotor training (i.e., the individual contribution of motor activity, temporal evolution of the visual trace, variability of visual output) remain unclear. To address these questions, we assessed visual discrimination capabilities of healthy right-handed participants (N = 60) before and after graphomotor or visual training. Contrary to our initial expectation, graphomotor engagement with the non-dominant hand did not yield additional benefits to visual learning beyond those attainable through visual training alone. Moreover, graphomotor training with the non-dominant hand resulted in visual discrimination improvements comparable to those of dominant hand training, despite the inherent differences between hands in motor performance and in the amount of improvement in shape tracing throughout training. We conclude that the motor components of graphomotor activity may not be critical for visual learning of shapes through tracing activity. Instead, our results are in agreement with the symbolic theoretical account, suggesting that basic shape features required for discrimination can be acquired through visual inspection alone, providing a perspective on the improvements observed in prior studies.
Collapse
Affiliation(s)
- Shlomit Ben-Ami
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.
- School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Batel Buaron
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
- School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Ori Yaron
- School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Kyle Keane
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Computer Science, University of Bristol, Bristol, UK
| | | | - Flip Phillips
- MAGIC Center, Rochester Institute of Technology, Rochester, NY, USA
| | - Jason Friedman
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
- Department of Physical Therapy, Faculty of Medical and Health Sciences, Stanley Steyer School of Health Professions, Tel Aviv University, Tel Aviv, Israel
| | - Pawan Sinha
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roy Mukamel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
- School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Liu X, He D, Zhu M, Li Y, Lin L, Cai Q. Hemispheric dominance in reading system alters contribution to face processing lateralization across development. Dev Cogn Neurosci 2024; 69:101418. [PMID: 39059053 PMCID: PMC11331717 DOI: 10.1016/j.dcn.2024.101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/07/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Face processing dominates the right hemisphere. This lateralization can be affected by co-lateralization within the same system and influence between different systems, such as neural competition from reading acquisition. Yet, how the relationship pattern changes through development remains unknown. This study examined the lateralization of core face processing and word processing in different age groups. By comparing fMRI data from 36 school-aged children and 40 young adults, we investigated whether there are age and regional effects on lateralization, and how relationships between lateralization within and between systems change across development. Our results showed significant right hemispheric lateralization in the core face system and left hemispheric lateralization in reading-related areas for both age groups when viewing faces and texts passively. While all participants showed stronger lateralization in brain regions of higher functional hierarchy when viewing faces, only adults exhibited this lateralization when viewing texts. In both age cohorts, there was intra-system co-lateralization for face processing, whereas an inter-system relationship was only found in adults. Specifically, functional lateralization of Broca's area during reading negatively predicted functional asymmetry in the FFA during face perception. This study initially provides neuroimaging evidence for the reading-induced neural competition theory from a maturational perspective in Chinese cohorts.
Collapse
Affiliation(s)
- Xinyang Liu
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.
| | - Danni He
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Miaomiao Zhu
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yinghui Li
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Longnian Lin
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Center for Brain Science and Brain-Inspired Technology, East China Normal University, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University, Shanghai, China; School of Life Science Department, East China Normal University, Shanghai 200062, China.
| | - Qing Cai
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China; Shanghai Center for Brain Science and Brain-Inspired Technology, East China Normal University, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University, Shanghai, China.
| |
Collapse
|
4
|
From Hand to Eye: a Meta-Analysis of the Benefit from Handwriting Training in Visual Graph Recognition. EDUCATIONAL PSYCHOLOGY REVIEW 2022. [DOI: 10.1007/s10648-021-09651-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Vinci-Booher S, James KH. Protracted Neural Development of Dorsal Motor Systems During Handwriting and the Relation to Early Literacy Skills. Front Psychol 2021; 12:750559. [PMID: 34867637 PMCID: PMC8639586 DOI: 10.3389/fpsyg.2021.750559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022] Open
Abstract
Handwriting is a complex visual-motor skill that affects early reading development. A large body of work has demonstrated that handwriting is supported by a widespread neural system comprising ventral-temporal, parietal, and frontal motor regions in adults. Recent work has demonstrated that this neural system is largely established by 8 years of age, suggesting that the development of this system occurs in young children who are still learning to read and write. We made use of a novel MRI-compatible writing tablet that allowed us to measure brain activation in 5-8-year-old children during handwriting. We compared activation during handwriting in children and adults to provide information concerning the developmental trajectory of the neural system that supports handwriting. We found that parietal and frontal motor involvement during handwriting in children is different from adults, suggesting that the neural system that supports handwriting changes over the course of development. Furthermore, we found that parietal and frontal motor activation correlated with a literacy composite score in our child sample, suggesting that the individual differences in the dorsal response during handwriting are related to individual differences in emerging literacy skills. Our results suggest that components of the widespread neural system supporting handwriting develop at different rates and provide insight into the mechanisms underlying the contributions of handwriting to early literacy development.
Collapse
Affiliation(s)
| | - Karin H. James
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
6
|
Fernandes T, Araújo S. From Hand to Eye With the Devil In-Between: Which Cognitive Mechanisms Underpin the Benefit From Handwriting Training When Learning Visual Graphs? Front Psychol 2021; 12:736507. [PMID: 34777123 PMCID: PMC8578702 DOI: 10.3389/fpsyg.2021.736507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022] Open
Abstract
Cognitive science has recently shown a renewed interest on the benefit from training in handwriting (HW) when learning visual graphs, given that this learning experience improves more subsequent visual graph recognition than other forms of training. However, the underlying cognitive mechanism of this HW benefit has been elusive. Building on the 50 years of research on this topic, the present work outlines a theoretical approach to study this mechanism, specifying testable hypotheses that will allow distinguishing between confronting perspectives, i.e., symbolic accounts that hold that perceptual learning and visual analysis underpin the benefit from HW training vs. embodied sensorimotor accounts that argue for motoric representations as inner part of orthographic representations acquired via HW training. From the evidence critically revisited, we concluded that symbolic accounts are parsimonious and could better explain the benefit from HW training when learning visual graphs. The future challenge will be to put at test the detailed predictions presented here, so that the devil has no longer room in this equation.
Collapse
Affiliation(s)
- Tânia Fernandes
- Faculdade de Psicologia, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Araújo
- Faculdade de Psicologia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Vinci-Booher S, James KH. Ecological validity of experimental set-up affects parietal involvement during letter production. Neurosci Lett 2020; 731:134920. [PMID: 32272143 DOI: 10.1016/j.neulet.2020.134920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/08/2020] [Accepted: 03/18/2020] [Indexed: 11/18/2022]
Abstract
Studies of symbol production using fMRI often use techniques that introduce an artificial pairing between motor production and visual perception. These techniques allow participants to see their own output by recording their pen trajectories using a touchscreen-only tablet and displaying these productions on a mirror placed above their head. We recently developed an MR-safe writing tablet with video display that allows participants to see their own hand and their own productions while producing symbols in real time on the surface where they are producing them-allowing for more ecologically valid fMRI studies of production. We conducted a study to determine whether the participation of posterior parietal cortex during symbol production was affected by the pairing of motor production and visual feedback associated with the two types of tablets. We performed ROI analyses in intraparietal sulcus while adult participants produced letters to dictation using either a touchscreen-only tablet (no visual guidance of the hand) (n = 14) or using a touchscreen-and-video-display tablet (visual guidance of the hand) (n = 14). We found that left posterior intraparietal sulcus was more active during production with the touchscreen-only tablet than during production with the touchscreen-and-video-display tablet. These results suggest that posterior parietal involvement during production tasks is associated with the somewhat artificial visual-motor pairing that is introduced by the techniques used in some studies of symbol production.
Collapse
Affiliation(s)
- Sophia Vinci-Booher
- 1101 E. 10th Street, Indiana University, Bloomington, IN 47405, United States.
| | - Karin H James
- 1101 E. 10th Street, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|