1
|
Rahimi Darehbagh R, Seyedoshohadaei SA, Ramezani R, Rezaei N. Stem cell therapies for neurological disorders: current progress, challenges, and future perspectives. Eur J Med Res 2024; 29:386. [PMID: 39054501 PMCID: PMC11270957 DOI: 10.1186/s40001-024-01987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Stem cell-based therapies have emerged as a promising approach for treating various neurological disorders by harnessing the regenerative potential of stem cells to restore damaged neural tissue and circuitry. This comprehensive review provides an in-depth analysis of the current state of stem cell applications in primary neurological conditions, including Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), stroke, spinal cord injury (SCI), and other related disorders. The review begins with a detailed introduction to stem cell biology, discussing the types, sources, and mechanisms of action of stem cells in neurological therapies. It then critically examines the preclinical evidence from animal models and early human trials investigating the safety, feasibility, and efficacy of different stem cell types, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). While ESCs have been studied extensively in preclinical models, clinical trials have primarily focused on adult stem cells such as MSCs and NSCs, as well as iPSCs and their derivatives. We critically assess the current state of research for each cell type, highlighting their potential applications and limitations in different neurological conditions. The review synthesizes key findings from recent, high-quality studies for each neurological condition, discussing cell manufacturing, delivery methods, and therapeutic outcomes. While the potential of stem cells to replace lost neurons and directly reconstruct neural circuits is highlighted, the review emphasizes the critical role of paracrine and immunomodulatory mechanisms in mediating the therapeutic effects of stem cells in most neurological disorders. The article also explores the challenges and limitations associated with translating stem cell therapies into clinical practice, including issues related to cell sourcing, scalability, safety, and regulatory considerations. Furthermore, it discusses future directions and opportunities for advancing stem cell-based treatments, such as gene editing, biomaterials, personalized iPSC-derived therapies, and novel delivery strategies. The review concludes by emphasizing the transformative potential of stem cell therapies in revolutionizing the treatment of neurological disorders while acknowledging the need for rigorous clinical trials, standardized protocols, and multidisciplinary collaboration to realize their full therapeutic promise.
Collapse
Affiliation(s)
- Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Nanoclub Elites Association, Tehran, Iran
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Universal Scientific Education and Research Network (USERN), Sanandaj, Kurdistan, Iran
| | | | - Rojin Ramezani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Beiter RM, Rivet-Noor C, Merchak AR, Bai R, Johanson DM, Slogar E, Sol-Church K, Overall CC, Gaultier A. Evidence for oligodendrocyte progenitor cell heterogeneity in the adult mouse brain. Sci Rep 2022; 12:12921. [PMID: 35902669 PMCID: PMC9334628 DOI: 10.1038/s41598-022-17081-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/20/2022] [Indexed: 12/25/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) account for approximately 5% of the adult brain and have been historically studied for their role in myelination. In the adult brain, OPCs maintain their proliferative capacity and ability to differentiate into oligodendrocytes throughout adulthood, even though relatively few mature oligodendrocytes are produced post-developmental myelination. Recent work has begun to demonstrate that OPCs likely perform multiple functions in both homeostasis and disease and can significantly impact behavioral phenotypes such as food intake and depressive symptoms. However, the exact mechanisms through which OPCs might influence brain function remain unclear. The first step in further exploration of OPC function is to profile the transcriptional repertoire and assess the heterogeneity of adult OPCs. In this work, we demonstrate that adult OPCs are transcriptionally diverse and separate into two distinct populations in the homeostatic brain. These two groups show distinct transcriptional signatures and enrichment of biological processes unique to individual OPC populations. We have validated these OPC populations using multiple methods, including multiplex RNA in situ hybridization and RNA flow cytometry. This study provides an important resource that profiles the transcriptome of adult OPCs and will provide a toolbox for further investigation into novel OPC functions.
Collapse
Affiliation(s)
- Rebecca M Beiter
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Courtney Rivet-Noor
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Andrea R Merchak
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Robin Bai
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - David M Johanson
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Erica Slogar
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Katia Sol-Church
- Genome Analysis and Technology Core, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Christopher C Overall
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Alban Gaultier
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
3
|
Wei H, Dong X, You Y, Hai B, Duran RCD, Wu X, Kharas N, Wu JQ. OLIG2 regulates lncRNAs and its own expression during oligodendrocyte lineage formation. BMC Biol 2021; 19:132. [PMID: 34172044 PMCID: PMC8235854 DOI: 10.1186/s12915-021-01057-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oligodendrocytes, responsible for axon ensheathment, are critical for central nervous system (CNS) development, function, and diseases. OLIG2 is an important transcription factor (TF) that acts during oligodendrocyte development and performs distinct functions at different stages. Previous studies have shown that lncRNAs (long non-coding RNAs; > 200 bp) have important functions during oligodendrocyte development, but their roles have not been systematically characterized and their regulation is not yet clear. RESULTS We performed an integrated study of genome-wide OLIG2 binding and the epigenetic modification status of both coding and non-coding genes during three stages of oligodendrocyte differentiation in vivo: neural stem cells (NSCs), oligodendrocyte progenitor cells (OPCs), and newly formed oligodendrocytes (NFOs). We found that 613 lncRNAs have OLIG2 binding sites and are expressed in at least one cell type, which can potentially be activated or repressed by OLIG2. Forty-eight of them have increased expression in oligodendrocyte lineage cells. Predicting lncRNA functions by using a "guilt-by-association" approach revealed that the functions of these 48 lncRNAs were enriched in "oligodendrocyte development and differentiation." Additionally, bivalent genes are known to play essential roles during embryonic stem cell differentiation. We identified bivalent genes in NSCs, OPCs, and NFOs and found that some bivalent genes bound by OLIG2 are dynamically regulated during oligodendrocyte development. Importantly, we unveiled a previously unknown mechanism that, in addition to transcriptional regulation via DNA binding, OLIG2 could self-regulate through the 3' UTR of its own mRNA. CONCLUSIONS Our studies have revealed the missing links in the mechanisms regulating oligodendrocyte development at the transcriptional level and after transcription. The results of our research have improved the understanding of fundamental cell fate decisions during oligodendrocyte lineage formation, which can enable insights into demyelination diseases and regenerative medicine.
Collapse
Affiliation(s)
- Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Xiaomin Dong
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Yanan You
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Bo Hai
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Raquel Cuevas-Diaz Duran
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L., Mexico
| | - Xizi Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Natasha Kharas
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
4
|
Park S, Lee JY, You S, Song G, Lim W. Neurotoxic effects of aflatoxin B1 on human astrocytes in vitro and on glial cell development in zebrafish in vivo. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121639. [PMID: 31787402 DOI: 10.1016/j.jhazmat.2019.121639] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Aflatoxin B1 is one of the well-known mycotoxins and mainly found in contaminated animal feed and various agricultural products inducing acute and chronic toxicology, tumor, and abnormal neural development. However, the effects of aflatoxin B1 on the human brain, especially on astrocytes, have not been studied in depth. In the present study, we studied the neurotoxic effects of aflatoxin B1, in vitro and in vivo. Aflatoxin B1 decreased the proliferation and stopped cell cycle progression at the sub G0/G1 stage with an increase in BAX, BAK, and cytochrome c proteins in human astrocytes. In addition, it increased the mitochondrial depolarization, oxidative stress, and calcium influx in both the cytosol and mitochondria. Surprisingly, inhibition of calcium overload in the cytosol and mitochondria, using calcium chelators and an inhibitor, partially rescued the proliferation of aflatoxin B1-treated astrocytes. Based on the toxicity assays using zebrafish models, aflatoxin B1 decreased the embryo survival rate with physiological changes and an increase in the caspase and tp53 genes. It also decreased the expression of gfap, mbp, and olig2 in the transgenic zebrafish embryo's brain and axon. Our results revealed the specific mechanism of the neurotoxic effects of aflatoxin B1 on human astrocytes and zebrafish glial cells.
Collapse
Affiliation(s)
- Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Seungkwon You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
5
|
Tan BT, Jiang L, Liu L, Yin Y, Luo ZRX, Long ZY, Li S, Yu LH, Wu YM, Liu Y. Local injection of Lenti-Olig2 at lesion site promotes functional recovery of spinal cord injury in rats. CNS Neurosci Ther 2017; 23:475-487. [PMID: 28452182 DOI: 10.1111/cns.12694] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/17/2022] Open
Abstract
AIMS Olig2 is one of the most critical factors during CNS development, which belongs to b-HLH transcription factor family. Previous reports have shown that Olig2 regulates the remyelination processes in CNS demyelination diseases models. However, the role of Olig2 in contusion spinal cord injury (SCI) and the possible therapeutic effects remain obscure. This study aims to investigate the effects of overexpression Olig2 by lentivirus on adult spinal cord injury rats. METHODS Lenti-Olig2 expression and control Lenti-eGFP vectors were prepared, and virus in a total of 5 μL (108 TU/mL) was locally injected into the injured spinal cord 1.5 mm rostral and caudal near the epicenter. Immunostaining, Western blot, electron microscopy, and CatWalk analyzes were employed to investigate the effects of Olig2 on spinal cord tissue repair and functional recovery. RESULTS Injection of Lenti-Olig2 significantly increased the number of oligodendrocytes lineage cells and enhanced myelination after SCI. More importantly, the introduction of Olig2 greatly improved hindlimb locomotor performances. Other oligodendrocyte-related transcription factors, which were downregulated or upregulated after injury, were reversed by Olig2 induction. CONCLUSIONS Our findings provided the evidence that overexpression Olig2 promotes myelination and locomotor recovery of contusion SCI, which gives us more understanding of Olig2 on spinal cord injury treatment.
Collapse
Affiliation(s)
- Bo-Tao Tan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing, China.,Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Long Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Li Liu
- Department of Brain, The Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ze-Ru-Xin Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Le-Hua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ya-Min Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Yuan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
6
|
Transplanted miR-219-overexpressing oligodendrocyte precursor cells promoted remyelination and improved functional recovery in a chronic demyelinated model. Sci Rep 2017; 7:41407. [PMID: 28145507 PMCID: PMC5286453 DOI: 10.1038/srep41407] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) have the ability to repair demyelinated lesions by maturing into myelin-producing oligodendrocytes. Recent evidence suggests that miR-219 helps regulate the differentiation of OPCs into oligodendrocytes. We performed oligodendrocyte differentiation studies using miR-219-overexpressing mouse embryonic stem cells (miR219-mESCs). The self-renewal and multiple differentiation properties of miR219-mESCs were analyzed by the expression of the stage-specific cell markers Nanog, Oct4, nestin, musashi1, GFAP, Tuj1 and O4. MiR-219 accelerated the differentiation of mESC-derived neural precursor cells (NPCs) into OPCs. We further transplanted OPCs derived from miR219-mESCs (miR219-OPCs) into cuprizone-induced chronically demyelinated mice to observe remyelination, which resulted in well-contained oligodendrocyte grafts that migrated along the corpus callosum and matured to express myelin basic protein (MBP). Ultrastructural studies further confirmed the presence of new myelin sheaths. Improved cognitive function in these mice was confirmed by behavioral tests. Importantly, the transplanted miR219-OPCs induced the proliferation of endogenous NPCs. In conclusion, these data demonstrate that miR-219 rapidly transforms mESCs into oligodendrocyte lineage cells and that the transplantation of miR219-OPCs not only promotes remyelination and improves cognitive function but also enhances the proliferation of host endogenous NPCs following chronic demyelination. These results support the potential of a therapeutic role for miR-219 in demyelinating diseases.
Collapse
|
7
|
Liu W, Zhou H, Liu L, Zhao C, Deng Y, Chen L, Wu L, Mandrycky N, McNabb CT, Peng Y, Fuchs PN, Lu J, Sheen V, Qiu M, Mao M, Lu QR. Disruption of neurogenesis and cortical development in transgenic mice misexpressing Olig2, a gene in the Down syndrome critical region. Neurobiol Dis 2015; 77:106-16. [PMID: 25747816 DOI: 10.1016/j.nbd.2015.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 02/08/2015] [Accepted: 02/24/2015] [Indexed: 12/15/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor Olig2 is crucial for mammalian central nervous system development. Human ortholog OLIG2 is located in the Down syndrome critical region in trisomy 21. To investigate the effect of Olig2 misexpression on brain development, we generated a developmentally regulated Olig2-overexpressing transgenic line with a Cre/loxP system. The transgenic mice with Olig2 misexpression in cortical neural stem/progenitor cells exhibited microcephaly, cortical dyslamination, hippocampus malformation, and profound motor deficits. Ectopic misexpression of Olig2 impaired cortical progenitor proliferation and caused precocious cell cycle exit. Massive neuronal cell death was detected in the developing cortex of Olig2-misexpressing mice. In addition, Olig2 misexpression led to a significant downregulation of neuronal specification factors including Ngn1, Ngn2 and Pax6, and a defect in cortical neurogenesis. Chromatin-immunoprecipitation and sequencing (ChIP-Seq) analysis indicates that Olig2 directly targets the promoter and/or enhancer regions of Nfatc4, Dscr1/Rcan1 and Dyrk1a, the critical neurogenic genes that contribute to Down syndrome phenotypes, and inhibits their expression. Together, our study suggests that Olig2 misexpression in neural stem cells elicits neurogenesis defects and neuronal cell death, which may contribute to developmental disorders including Down syndrome, where OLIG2 is triplicated on chromosomal 21.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, 610041, PR China; Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA; Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Hui Zhou
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Lei Liu
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Chuntao Zhao
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA
| | - Yaqi Deng
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA
| | - Lina Chen
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Laiman Wu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA
| | - Nicole Mandrycky
- Department of Developmental Biology, University of Texas Southwestern Medical Center, TX 75390, USA
| | | | - Yuanbo Peng
- Department of Psychology, University of Texas, Arlington, TX 76019, USA
| | - Perry N Fuchs
- Department of Psychology, University of Texas, Arlington, TX 76019, USA
| | - Jie Lu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Volney Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Mengsheng Qiu
- Institute of Developmental and Regenerative Biology, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, 310029, PR China; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
| | - Meng Mao
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, 610041, PR China; Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA; Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, PR China; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 201102, PR China.
| |
Collapse
|