1
|
Karunaraj P, Tidswell O, Duncan EJ, Lovegrove MR, Jefferies G, Johnson TK, Beck CW, Dearden PK. Noggin proteins are multifunctional extracellular regulators of cell signalling. Genetics 2022; 221:6561546. [PMID: 35357435 PMCID: PMC9071555 DOI: 10.1093/genetics/iyac049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/25/2022] [Indexed: 11/14/2022] Open
Abstract
Noggin is an extracellular cysteine knot protein that plays a crucial role in vertebrate dorsoventral patterning. Noggin binds and inhibits the activity of bone morphogenetic proteins via a conserved N-terminal clip domain. Noncanonical orthologs of Noggin that lack a clip domain (“Noggin-like” proteins) are encoded in many arthropod genomes and are thought to have evolved into receptor tyrosine kinase ligands that promote Torso/receptor tyrosine kinase signaling rather than inhibiting bone morphogenic protein signaling. Here, we examined the molecular function of noggin/noggin-like genes (ApNL1 and ApNL2) from the arthropod pea aphid using the dorso-ventral patterning of Xenopus and the terminal patterning system of Drosophila to identify whether these proteins function as bone morphogenic protein or receptor tyrosine kinase signaling regulators. Our findings reveal that ApNL1 from the pea aphid can regulate both bone morphogenic protein and receptor tyrosine kinase signaling pathways, and unexpectedly, that the clip domain is not essential for its antagonism of bone morphogenic protein signaling. Our findings indicate that ancestral noggin/noggin-like genes were multifunctional regulators of signaling that have specialized to regulate multiple cell signaling pathways during the evolution of animals.
Collapse
Affiliation(s)
- Prashath Karunaraj
- Laboratory for Development and Regeneration, Department of Zoology, University of Otago, Dunedin 9016, Aotearoa-New Zealand.,Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9016, Aotearoa-New Zealand
| | - Olivia Tidswell
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Grace Jefferies
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Caroline W Beck
- Laboratory for Development and Regeneration, Department of Zoology, University of Otago, Dunedin 9016, Aotearoa-New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9016, Aotearoa-New Zealand
| |
Collapse
|
3
|
Imai Y, Ishida K, Nemoto M, Nakata K, Kato T, Maéno M. Multiple origins of embryonic and tadpole myeloid cells in Xenopus laevis. Cell Tissue Res 2017; 369:341-352. [PMID: 28374149 DOI: 10.1007/s00441-017-2601-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 02/23/2017] [Indexed: 11/25/2022]
Abstract
Rabbit anti-serum against a myeloid-cell-specific peroxidase (Mpo) of Xenopus laevis was generated to identify myeloid cells in adult and larval animals. Smears of blood samples from adult hematopoietic organs were co-stained with Mpo and with XL-2, a mouse monoclonal antibody against a leukocyte common antigen. Lymphocytes found in the thymus and spleen were XL-2+Mpo- and granulocytes found in peripheral blood cells and the spleen were XL-2+Mpo+, indicating that double-staining with these two antibodies allowed classification of the leukocyte lineages. Immunohistochemical analysis of larval organs showed that XL-2+Mpo- cells were scattered throughout the liver, whereas XL-2+Mpo+ cells were present mainly in the cortex region. Interestingly, a cluster of XL-2+Mpo+ cells was found in the region of the larval mesonephric rudiment. The ratio of XL-2+Mpo+ cells to XL-2+ cells in the mesonephric region was approximately 80%, which was much higher than that found in other hematopoietic organs. In order to elucidate the embryonic origin of the myeloid cells in the tadpole mesonephros, grafting experiments between X. laevis and X. borealis embryos were performed to trace the X. borealis cells as donor cells. Among the embryonic tissues examined, the tailbud tissue at the early neurula stage contributed greatly to the myeloid cluster in the mesonephric region at stage 48. Therefore, at least four independent origins of the myeloid cell population can be traced in the Xenopus embryo.
Collapse
Affiliation(s)
- Yasutaka Imai
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Keisuke Ishida
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Maya Nemoto
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Keisuke Nakata
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Takashi Kato
- Department of Biology, School of Education, Center for Advanced Biomedical Science, Waseda University, TWIns building, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Mitsugu Maéno
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan.
| |
Collapse
|
4
|
Ma JE, Lang QQ, Qiu FF, Zhang L, Li XG, Luo W, Wang J, Wang X, Lin XR, Liu WS, Nie QH, Zhang XQ. Negative Glucocorticoid Response-Like Element from the First Intron of the Chicken Growth Hormone Gene Represses Gene Expression in the Rat Pituitary Tumor Cell Line. Int J Mol Sci 2016; 17:ijms17111863. [PMID: 27834851 PMCID: PMC5133863 DOI: 10.3390/ijms17111863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022] Open
Abstract
The effects of introns, especially the first intron, on the regulation of gene expression remains unclear. Therefore, the objective of the present study was to investigate the transcriptional regulatory function of intron 1 on the chicken growth hormone (cGH) gene in the rat pituitary tumor cell line (GH4-C1). Transient transfection using first-intron-inserted cGH complete coding sequences (CDSs) and non-intron-inserted cGH CDS plasmids, quantitative RT-PCR (qRT-PCR) and western blot assays were used to detect the expression of cGH. The reporter gene assay was also used to investigate the effect of a series of fragments in the first intron of cGH on gene expression in GH4-C1. All of the results revealed that a 200-bp fragment located in the +485/+684 region of intron 1 was essential for repressing the expression of cGH. Further informatics analysis showed that there was a cluster of 13 transcriptional factor binding sites (TFBSs) in the +485/+684 region of the cGH intron 1. Disruption of a glucocorticoid response-like element (the 19-nucleotide sequence 5'-AGGCTTGACAGTGACCTCC-3') containing a T-box motif (TGACCT) located within this DNA fragment increased the expression of the reporter gene in GH4-C1. In addition, an electrophoretic mobility shift assay (EMSA) revealed a glucocorticoid receptor (GR) protein of rat binding to the glucocorticoid response-like element. Together, these results indicate that there is a negative glucocorticoid response-like element (nGRE) located in the +591/+609 region within the first intron of cGH, which is essential for the down-regulation of cGH expression.
Collapse
Affiliation(s)
- Jing-E Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qian-Qian Lang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Feng-Fang Qiu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Li Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang-Guang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Ran Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Wen-Sheng Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qing-Hua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Quan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|