1
|
Cheng XW, Chen ZF, Wan YF, Zhou Q, Wang H, Zhu HQ. Long Non-coding RNA H19 Suppression Protects the Endothelium Against Hyperglycemic-Induced Inflammation via Inhibiting Expression of miR-29b Target Gene Vascular Endothelial Growth Factor a Through Activation of the Protein Kinase B/Endothelial Nitric Oxide Synthase Pathway. Front Cell Dev Biol 2019; 7:263. [PMID: 31737629 PMCID: PMC6838022 DOI: 10.3389/fcell.2019.00263] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/17/2019] [Indexed: 01/18/2023] Open
Abstract
It has been shown that non-coding RNAs (ncRNAs) play an important regulatory role in pathophysiological processes involving inflammation. The vascular endothelial growth factor A (VEGFA) gene also participates in the inflammatory process. However, the relationships between ncRNAs and VEGFA are currently unclear. Here, this study was designed to determine the relationship between long non-coding RNA (lncRNA) H19, mircoRNA29b (miR-29b), and VEGFA in the development of diabetes mellitus (DM). We demonstrate that H19 is upregulated and miR-29b downregulated in individuals with DM and directly binds miR-29b. VEGFA is the target of miR-29b in the vascular endothelium of individuals with DM. We found that positive modulation of miR29b and inhibition of H19 and VEGFA significantly attenuates high glucose-induced endothelial inflammation and oxidative stress. We also found that the protein kinase B/endothelial nitric oxide synthase (AKT/eNOS) signal pathway in endothelial cells is activated through regulation of miR29b and H19 endogenous RNAs. We conclude that H19 suppression protects the endothelium against high glucose-induced inflammation and oxidative stress in endothelial cells by upregulation of miR-29b and downregulation of VEGFA through AKT/eNOS signal pathway activation. These results suggest a novel link between dysregulated ncRNA expression, inflammation, and the signaling pathway in the vascular endothelium of individuals with DM, indicating a promising strategy for preventing cardiovascular disease in such individuals.
Collapse
Affiliation(s)
- Xiao-Wen Cheng
- Department of Clinical Laboratory, The First Affiliated Hospital, Anhui Medical University, Hefei, China.,Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Zhen-Fei Chen
- Department of Vasculocardiology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yu-Feng Wan
- Department of Otolaryngology, The Affiliated Chaohu Hospital, Anhui Medical University, Hefei, China
| | - Qing Zhou
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Disease, Anhui Medical University, Hefei, China
| | - Hua-Qing Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Abstract
SummarySomatic cell nuclear transfer (SCNT) is an important technique for life science research. However, most SCNT embryos fail to develop to term due to undefined reprogramming defects. Here, we show that abnormal Xi occurs in somatic cell NT blastocysts, whereas in female blastocysts derived from cumulus cell nuclear transfer, both X chromosomes were inactive. H3K27me3 removal by Kdm6a mRNA overexpression could significantly improve preimplantation development of NT embryos, and even reached a 70.2% blastocyst rate of cleaved embryos compared with the 38.5% rate of the control. H3K27me3 levels were significantly reduced in blastomeres from cloned blastocysts after overexpression of Kdm6a. qPCR indicated that rDNA transcription increased in both NT embryos and 293T cells after overexpression of Kdm6a. Our findings demonstrate that overexpression of Kdm6a improved the development of cloned mouse embryos by reducing H3K27me3 and increasing rDNA transcription.
Collapse
|
3
|
Varrault A, Eckardt S, Girard B, Le Digarcher A, Sassetti I, Meusnier C, Ripoll C, Badalyan A, Bertaso F, McLaughlin KJ, Journot L, Bouschet T. Mouse Parthenogenetic Embryonic Stem Cells with Biparental-Like Expression of Imprinted Genes Generate Cortical-Like Neurons That Integrate into the Injured Adult Cerebral Cortex. Stem Cells 2017; 36:192-205. [PMID: 29044892 DOI: 10.1002/stem.2721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/19/2017] [Accepted: 10/07/2017] [Indexed: 01/10/2023]
Abstract
One strategy for stem cell-based therapy of the cerebral cortex involves the generation and transplantation of functional, histocompatible cortical-like neurons from embryonic stem cells (ESCs). Diploid parthenogenetic Pg-ESCs have recently emerged as a promising source of histocompatible ESC derivatives for organ regeneration but their utility for cerebral cortex therapy is unknown. A major concern with Pg-ESCs is genomic imprinting. In contrast with biparental Bp-ESCs derived from fertilized oocytes, Pg-ESCs harbor two maternal genomes but no sperm-derived genome. Pg-ESCs are therefore expected to have aberrant expression levels of maternally expressed (MEGs) and paternally expressed (PEGs) imprinted genes. Given the roles of imprinted genes in brain development, tissue homeostasis and cancer, their deregulation in Pg-ESCs might be incompatible with therapy. Here, we report that, unexpectedly, only one gene out of 7 MEGs and 12 PEGs was differentially expressed between Pg-ESCs and Bp-ESCs while 13 were differentially expressed between androgenetic Ag-ESCs and Bp-ESCs, indicating that Pg-ESCs but not Ag-ESCs, have a Bp-like imprinting compatible with therapy. In vitro, Pg-ESCs generated cortical-like progenitors and electrophysiologically active glutamatergic neurons that maintained the Bp-like expression levels for most imprinted genes. In vivo, Pg-ESCs participated to the cortical lineage in fetal chimeras. Finally, transplanted Pg-ESC derivatives integrated into the injured adult cortex and sent axonal projections in the host brain. In conclusion, mouse Pg-ESCs generate functional cortical-like neurons with Bp-like imprinting and their derivatives properly integrate into both the embryonic cortex and the injured adult cortex. Collectively, our data support the utility of Pg-ESCs for cortical therapy. Stem Cells 2018;36:192-205.
Collapse
Affiliation(s)
- Annie Varrault
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Sigrid Eckardt
- Research Institute at Nationwide Children's Hospital, Center for Molecular and Human Genetics, Columbus, Ohio, USA
| | - Benoît Girard
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Anne Le Digarcher
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Isabelle Sassetti
- Institute for Neuroscience of Montpellier, Hôpital Saint Eloi, Montpellier cedex 5, France
| | - Céline Meusnier
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Chantal Ripoll
- Institute for Neuroscience of Montpellier, Hôpital Saint Eloi, Montpellier cedex 5, France
| | - Armen Badalyan
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Federica Bertaso
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - K John McLaughlin
- Research Institute at Nationwide Children's Hospital, Center for Molecular and Human Genetics, Columbus, Ohio, USA
| | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| |
Collapse
|