1
|
Chen D, Zhuang Z, Huang M, Huang Y, Yan Y, Zhang Y, Lin Y, Jin X, Wang Y, Huang J, Xu W, Pan J, Wang H, Huang F, Liao K, Cheng M, Zhu Z, Bai Y, Niu Z, Zhang Z, Xiang Y, Wei X, Yang T, Zeng T, Dong Y, Lei Y, Sun Y, Wang J, Yang H, Sun Y, Cao G, Poo M, Liu L, Naumann RK, Xu C, Wang Z, Xu X, Liu S. Genomic evolution reshapes cell-type diversification in the amniote brain. Dev Cell 2025:S1534-5807(25)00252-7. [PMID: 40367951 DOI: 10.1016/j.devcel.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 03/05/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025]
Abstract
Over 320 million years of evolution, amniotes have developed complex brains and cognition through largely unexplored genetic and gene expression mechanisms. We created a comprehensive single-cell atlas of over 1.3 million cells from the telencephalon and cerebellum of turtles, zebra finches, pigeons, mice, and macaques, employing single-cell resolution spatial transcriptomics to validate gene expression patterns across species. Our study identifies significant species-specific variations in cell types, highlighting their conservation and diversification in evolution. We found pronounced differences in telencephalon excitatory neurons (EXs) and cerebellar cell types between birds and mammals. Birds predominantly express SLC17A6 in EX, whereas mammals express SLC17A7 in the neocortex and SLC17A6 elsewhere, possibly due to loss of function of SLC17A7 in birds. Additionally, we identified a bird-specific Purkinje cell subtype (SVIL+), implicating the lysine-specific demethylase 11 (LSD1)/KDM1A pathway in learning and circadian rhythms and containing numerous positively selected genes, which suggests an evolutionary optimization of cerebellar functions for ecological and behavioral adaptation. Our findings elucidate the complex interplay between genetic evolution and environmental adaptation, underscoring the role of genetic diversification in the development of specialized cell types across amniotes.
Collapse
Affiliation(s)
- Duoyuan Chen
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China
| | - Zhenkun Zhuang
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | | | - Yuting Yan
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yanru Zhang
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Youning Lin
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Xiaoying Jin
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Yuanmei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China; HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Jinfeng Huang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China
| | - Wenbo Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | | | - Hong Wang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China
| | - Fubaoqian Huang
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Kuo Liao
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Mengnan Cheng
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Zhiyong Zhu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Yinqi Bai
- BGI Research, Hangzhou 310030, China
| | - Zhiwei Niu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Ze Zhang
- BGI Research, Hangzhou 310030, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Ya Xiang
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaofeng Wei
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Genomics Data Center, BGl research, Shenzhen 518120, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Genomics Data Center, BGl research, Shenzhen 518120, China
| | - Tao Zeng
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Yuliang Dong
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Ying Lei
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yangang Sun
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Wang
- BGI Research, Hangzhou 310030, China
| | - Huanming Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China; HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; James D. Watson Institute of Genome Sciences, Hangzhou 310029, China
| | - Yidi Sun
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Cao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Muming Poo
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Robert K Naumann
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China.
| | - Chun Xu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China.
| |
Collapse
|
2
|
Kourakis MJ, Ryan K, Newman-Smith ED, Meinertzhagen IA, Smith WC. Motor neurons in the tunicate caudal central nervous system reveal homology to the vertebrate spinal cord. Development 2025; 152:DEV204525. [PMID: 40079869 PMCID: PMC12050089 DOI: 10.1242/dev.204525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/31/2025] [Indexed: 03/15/2025]
Abstract
Invertebrate chordates, such as the tunicate Ciona, can offer insight into the evolution of the chordate phylum. Anatomical features shared between invertebrate chordates and vertebrates may be taken as evidence of their presence in a common chordate ancestor. The central nervous systems (CNSs) of Ciona larvae and vertebrates share a similar anatomy despite the Ciona CNS having only ∼180 neurons. However, the depth of conservation between the Ciona CNS and those of vertebrates is not resolved. The Ciona caudal CNS, while appearing spinal cord-like, has hitherto been thought to lack motor neurons, bringing into question its homology with the vertebrate spinal cord. We show here that the Ciona larval caudal CNS does, in fact, have functional motor neurons along its length, pointing to the presence of a functional spinal cord-like structure at the base of the chordates.
Collapse
Affiliation(s)
- Matthew J. Kourakis
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kerrianne Ryan
- Life Sciences Centre, Dalhousie University, Halifax, NS B3H 1A5, Canada
| | - Erin D. Newman-Smith
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | | | - William C. Smith
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Hildebrandt M, Kotewitsch M, Kaupp S, Salomon S, Schuster S, Machnik P. Stabilizing selection in an identified multisensory neuron in blind cavefish. Proc Natl Acad Sci U S A 2024; 121:e2415854121. [PMID: 39556758 PMCID: PMC11626160 DOI: 10.1073/pnas.2415854121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
The ability to follow the evolutionary trajectories of specific neuronal cell types has led to major insights into the evolution of the vertebrate brain. Here, we study how cave life in the Mexican tetra (Astyanax mexicanus) has affected an identified giant multisensory neuron, the Mauthner neuron (MN). Because this neuron is crucial in driving rapid escapes, the absence of predation risk in the cave forms predicts a massive reduction in this neuron. Moreover, the absence of functional eyes in the A. mexicanus Pachón form predicts an even stronger reduction in the cell's large ventral dendrite that receives visual inputs in sighted fish species. We succeeded in recording in vivo from this neuron in the blind cavefish and two surface tetra (A. mexicanus and Astyanax aeneus), which offers unique chances to simultaneously study evolutionary changes in morphology and function in this giant neuron. In contrast to the predictions, we find that cave life, while sufficient to remove vision, has neither affected the cell's morphology nor its functional properties. This specifically includes the cell's ventral dendrite. Furthermore, cave life did not increase the variance in morphological or functional features. Rather, variability in surface and cave forms was the same, which suggests a complex stabilizing selection in this neuron and a continued role of its ventral dendrite. We found that adult cavefish are potent predators that readily attack smaller fish. So, one of the largely unknown stabilizing factors could be using the MN in such attacks and, in the young fish, escaping them.
Collapse
Affiliation(s)
| | - Mona Kotewitsch
- Department of Animal Physiology, University of Bayreuth, Bayreuth95440, Germany
| | - Sabrina Kaupp
- Department of Animal Physiology, University of Bayreuth, Bayreuth95440, Germany
| | - Sophia Salomon
- Department of Animal Physiology, University of Bayreuth, Bayreuth95440, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, Bayreuth95440, Germany
| | - Peter Machnik
- Department of Animal Physiology, University of Bayreuth, Bayreuth95440, Germany
| |
Collapse
|
4
|
Medina BNSP, Portal TM, de Andrade Gomes CAB, Nunes-da-Fonseca R, Allodi S, Monteiro-de-Barros C. Identification of astrocyte-like cells in an adult ascidian during regeneration of the central nervous system. Glia 2024; 72:2190-2200. [PMID: 39152717 DOI: 10.1002/glia.24605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/30/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
The mechanisms underlying regeneration of the central nervous system (CNS) following lesions have been studied extensively in both vertebrate and invertebrate models. To shed light on regeneration, ascidians, a sister group of vertebrates and with remarkable ability to regenerate their brains, constitute an appropriate model system. Glial cells have been implicated in regeneration in vertebrates; however, their role in the adult ascidian CNS regeneration is unknown. A model of degeneration and regeneration using the neurotoxin 3-acetylpyridine (3AP) in the brain of the ascidian Styela plicata was used to identify astrocyte-like cells and investigate their role. We studied the CNS of control ascidians (injected with artificial sea water) and of ascidians whose CNS was regenerating (1 and 10 days after the injection with 3AP). Our results show that the mRNA of the ortholog of glutamine synthetase (GS), a glial-cell marker in vertebrates, is increased during the early stages of regeneration. Confirming the identity of GS, the protein was identified via immunostaining in a cell population during the same regeneration stage. Last, a single ortholog of GS (GSII) is present in ascidian and amphioxus genomes, while two types exist in fungi, some invertebrates, and vertebrates, suggesting that ascidians have lost the GSI type. Taken together, our findings revealed that a cell population expressing glial-cell markers may play a role in regeneration in adult ascidians. This is the first report of astrocyte-like cells in the adult ascidian CNS, and contributes to understanding of the evolution of glial cells among metazoans.
Collapse
Affiliation(s)
- Bianca Nicole Santos Paes Medina
- Laboratório Integrado de Biociências Translacionais Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
- Programa de Pós-Graduação em Ciências Morfológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Taynan Motta Portal
- Laboratório Integrado de Biociências Translacionais Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
- Programa de Pós-Graduação em Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Carlos Augusto Borges de Andrade Gomes
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade - NUPEM - Universidade Federal do Rio de Janeiro -, Macaé, RJ, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Cintia Monteiro-de-Barros
- Laboratório Integrado de Biociências Translacionais Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
- Programa de Pós-Graduação em Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
5
|
Liu L, Chen A, Li Y, Mulder J, Heyn H, Xu X. Spatiotemporal omics for biology and medicine. Cell 2024; 187:4488-4519. [PMID: 39178830 DOI: 10.1016/j.cell.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
The completion of the Human Genome Project has provided a foundational blueprint for understanding human life. Nonetheless, understanding the intricate mechanisms through which our genetic blueprint is involved in disease or orchestrates development across temporal and spatial dimensions remains a profound scientific challenge. Recent breakthroughs in cellular omics technologies have paved new pathways for understanding the regulation of genomic elements and the relationship between gene expression, cellular functions, and cell fate determination. The advent of spatial omics technologies, encompassing both imaging and sequencing-based methodologies, has enabled a comprehensive understanding of biological processes from a cellular ecosystem perspective. This review offers an updated overview of how spatial omics has advanced our understanding of the translation of genetic information into cellular heterogeneity and tissue structural organization and their dynamic changes over time. It emphasizes the discovery of various biological phenomena, related to organ functionality, embryogenesis, species evolution, and the pathogenesis of diseases.
Collapse
Affiliation(s)
| | - Ao Chen
- BGI Research, Shenzhen 518083, China
| | | | - Jan Mulder
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China.
| |
Collapse
|
6
|
Güntürkün O, Pusch R, Rose J. Why birds are smart. Trends Cogn Sci 2024; 28:197-209. [PMID: 38097447 PMCID: PMC10940863 DOI: 10.1016/j.tics.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 03/08/2024]
Abstract
Many cognitive neuroscientists believe that both a large brain and an isocortex are crucial for complex cognition. Yet corvids and parrots possess non-cortical brains of just 1-25 g, and these birds exhibit cognitive abilities comparable with those of great apes such as chimpanzees, which have brains of about 400 g. This opinion explores how this cognitive equivalence is possible. We propose four features that may be required for complex cognition: a large number of associative pallial neurons, a prefrontal cortex (PFC)-like area, a dense dopaminergic innervation of association areas, and dynamic neurophysiological fundaments for working memory. These four neural features have convergently evolved and may therefore represent 'hard to replace' mechanisms enabling complex cognition.
Collapse
Affiliation(s)
- Onur Güntürkün
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44780 Bochum, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr University Bochum, Bochum, Germany.
| | - Roland Pusch
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Jonas Rose
- Neural Basis of Learning, Faculty of Psychology, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
7
|
Muramatsu B, Suzuki DG, Suzuki M, Higashiyama H. Gross anatomy of the Pacific hagfish, Eptatretus burgeri, with special reference to the coelomic viscera. Anat Rec (Hoboken) 2024; 307:155-171. [PMID: 36958942 DOI: 10.1002/ar.25208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Hagfish (Myxinoidea) are a deep-sea taxon of cyclostomes, the extant jawless vertebrates. Many researchers have examined the anatomy and embryology of hagfish to shed light on the early evolution of vertebrates; however, the diversity within hagfish is often overlooked. Hagfish have three lineages, Myxininae, Eptatretinae, and Rubicundinae. Usually, textbook illustrations of hagfish anatomy reflect the morphology of the Myxininae lineage, especially Myxine glutinosa, with its single pair of external branchial pores. Here, we instead report the gross anatomy of an Eptatretinae, Eptatretus burgeri, which has six pairs of branchial pores, especially focusing on the coelomic organs. Dissections were performed on fixed and unfixed specimens to provide a guide for those doing organ- or tissue-specific molecular experiments. Our dissections revealed that the ventral aorta is Y-branched in E. burgeri, which differs from the unbranched morphology of Myxine. Otherwise, there were no differences in the morphology of the lingual apparatus or heart in the pharyngeal domain. The thyroid follicles were scattered around the ventral aorta, as has been reported for adult lampreys. The hepatobiliary system more closely resembled those of jawed vertebrates than those of adult lampreys, with the liver having two lobes and a bile duct connecting the gallbladder to each lobe. Overall, the visceral morphology of E. burgeri does not differ significantly from that of the known Myxine at the level of gross anatomy, although the branchial morphology is phylogenetically ancestral compared to Myxine.
Collapse
Affiliation(s)
- Banri Muramatsu
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Daichi G Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, 305-8572, Japan
| | - Masakazu Suzuki
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
8
|
Barandela M, Núñez-González C, Suzuki DG, Jiménez-López C, Pombal MA, Pérez-Fernández J. Unravelling the functional development of vertebrate pathways controlling gaze. Front Cell Dev Biol 2023; 11:1298486. [PMID: 37965576 PMCID: PMC10640995 DOI: 10.3389/fcell.2023.1298486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Animals constantly redirect their gaze away or towards relevant targets and, besides these goal-oriented responses, stabilizing movements clamp the visual scene avoiding image blurring. The vestibulo-ocular (VOR) and the optokinetic reflexes are the main contributors to gaze stabilization, whereas the optic tectum integrates multisensory information and generates orienting/evasive gaze movements in all vertebrates. Lampreys show a unique stepwise development of the visual system whose understanding provides important insights into the evolution and development of vertebrate vision. Although the developmental emergence of the visual components, and the retinofugal pathways have been described, the functional development of the visual system and the development of the downstream pathways controlling gaze are still unknown. Here, we show that VOR followed by light-evoked eye movements are the first to appear already in larvae, despite their burrowed lifestyle. However, the circuits controlling goal-oriented responses emerge later, in larvae in non-parasitic lampreys but during late metamorphosis in parasitic lampreys. The appearance of stabilizing responses earlier than goal-oriented in the lamprey development shows a stepwise transition from simpler to more complex visual systems, offering a unique opportunity to isolate the functioning of their underlying circuits.
Collapse
Affiliation(s)
- Marta Barandela
- CINBIO, Universidade de Vigo, Neurocircuits Group, Campus universitario Lagoas, Marcosende, Vigo, Spain
| | - Carmen Núñez-González
- CINBIO, Universidade de Vigo, Neurocircuits Group, Campus universitario Lagoas, Marcosende, Vigo, Spain
| | - Daichi G. Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Cecilia Jiménez-López
- CINBIO, Universidade de Vigo, Neurocircuits Group, Campus universitario Lagoas, Marcosende, Vigo, Spain
| | - Manuel A. Pombal
- Department of Functional Biology and Health Sciences, Facultade de Bioloxía-IBIV, Universidade de Vigo, Campus universitario Lagoas, Marcosende, Vigo, Spain
| | - Juan Pérez-Fernández
- CINBIO, Universidade de Vigo, Neurocircuits Group, Campus universitario Lagoas, Marcosende, Vigo, Spain
- Department of Functional Biology and Health Sciences, Facultade de Bioloxía-IBIV, Universidade de Vigo, Campus universitario Lagoas, Marcosende, Vigo, Spain
| |
Collapse
|
9
|
Lamanna F, Hervas-Sotomayor F, Oel AP, Jandzik D, Sobrido-Cameán D, Santos-Durán GN, Martik ML, Stundl J, Green SA, Brüning T, Mößinger K, Schmidt J, Schneider C, Sepp M, Murat F, Smith JJ, Bronner ME, Rodicio MC, Barreiro-Iglesias A, Medeiros DM, Arendt D, Kaessmann H. A lamprey neural cell type atlas illuminates the origins of the vertebrate brain. Nat Ecol Evol 2023; 7:1714-1728. [PMID: 37710042 PMCID: PMC10555824 DOI: 10.1038/s41559-023-02170-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
The vertebrate brain emerged more than ~500 million years ago in common evolutionary ancestors. To systematically trace its cellular and molecular origins, we established a spatially resolved cell type atlas of the entire brain of the sea lamprey-a jawless species whose phylogenetic position affords the reconstruction of ancestral vertebrate traits-based on extensive single-cell RNA-seq and in situ sequencing data. Comparisons of this atlas to neural data from the mouse and other jawed vertebrates unveiled various shared features that enabled the reconstruction of cell types, tissue structures and gene expression programs of the ancestral vertebrate brain. However, our analyses also revealed key tissues and cell types that arose later in evolution. For example, the ancestral brain was probably devoid of cerebellar cell types and oligodendrocytes (myelinating cells); our data suggest that the latter emerged from astrocyte-like evolutionary precursors in the jawed vertebrate lineage. Altogether, our work illuminates the cellular and molecular architecture of the ancestral vertebrate brain and provides a foundation for exploring its diversification during evolution.
Collapse
Affiliation(s)
- Francesco Lamanna
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | | | - A Phillip Oel
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Zoology, Comenius University, Bratislava, Slovakia
| | - Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gabriel N Santos-Durán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Megan L Martik
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stephen A Green
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Thoomke Brüning
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Katharina Mößinger
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia Schmidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Celine Schneider
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mari Sepp
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Florent Murat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- INRAE, LPGP, Rennes, France
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
10
|
Maxson Jones K, Morgan JR. Lampreys and spinal cord regeneration: "a very special claim on the interest of zoologists," 1830s-present. Front Cell Dev Biol 2023; 11:1113961. [PMID: 37228651 PMCID: PMC10203415 DOI: 10.3389/fcell.2023.1113961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Employing history of science methods, including analyses of the scientific literature, archival documents, and interviews with scientists, this paper presents a history of lampreys in neurobiology from the 1830s to the present. We emphasize the lamprey's roles in helping to elucidate spinal cord regeneration mechanisms. Two attributes have long perpetuated studies of lampreys in neurobiology. First, they possess large neurons, including multiple classes of stereotypically located, 'identified' giant neurons in the brain, which project their large axons into the spinal cord. These giant neurons and their axonal fibers have facilitated electrophysiological recordings and imaging across biological scales, ranging from molecular to circuit-level analyses of nervous system structures and functions and including their roles in behavioral output. Second, lampreys have long been considered amongst the most basal extant vertebrates on the planet, so they have facilitated comparative studies pointing to conserved and derived characteristics of vertebrate nervous systems. These features attracted neurologists and zoologists to studies of lampreys between the 1830s and 1930s. But, the same two attributes also facilitated the rise of the lamprey in neural regeneration research after 1959, when biologists first wrote about the spontaneous, robust regeneration of some identified CNS axons in larvae after spinal cord injuries, coupled with recovery of normal swimming. Not only did large neurons promote fresh insights in the field, enabling studies incorporating multiple scales with existing and new technologies. But investigators also were able to attach a broad scope of relevance to their studies, interpreting them as suggesting conserved features of successful, and sometimes even unsuccessful, CNS regeneration. Lamprey research demonstrated that functional recovery takes place without the reformation of the original neuronal connections, for instance, by way of imperfect axonal regrowth and compensatory plasticity. Moreover, research performed in the lamprey model revealed that factors intrinsic to neurons are integral in promoting or hindering regeneration. As this work has helped illuminate why basal vertebrates accomplish CNS regeneration so well, whereas mammals do it so poorly, this history presents a case study in how biological and medical value have been, and could continue to be, gleaned from a non-traditional model organism for which molecular tools have been developed only relatively recently.
Collapse
Affiliation(s)
- Kathryn Maxson Jones
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
- Department of History, Purdue University, West Lafayette, IN, United States
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, United States
| | - Jennifer R. Morgan
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, United States
| |
Collapse
|
11
|
Earl B. Humans, fish, spiders and bees inherited working memory and attention from their last common ancestor. Front Psychol 2023; 13:937712. [PMID: 36814887 PMCID: PMC9939904 DOI: 10.3389/fpsyg.2022.937712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/11/2022] [Indexed: 02/08/2023] Open
Abstract
All brain processes that generate behaviour, apart from reflexes, operate with information that is in an "activated" state. This activated information, which is known as working memory (WM), is generated by the effect of attentional processes on incoming information or information previously stored in short-term or long-term memory (STM or LTM). Information in WM tends to remain the focus of attention; and WM, attention and STM together enable information to be available to mental processes and the behaviours that follow on from them. WM and attention underpin all flexible mental processes, such as solving problems, making choices, preparing for opportunities or threats that could be nearby, or simply finding the way home. Neither WM nor attention are necessarily conscious, and both may have evolved long before consciousness. WM and attention, with similar properties, are possessed by humans, archerfish, and other vertebrates; jumping spiders, honey bees, and other arthropods; and members of other clades, whose last common ancestor (LCA) is believed to have lived more than 600 million years ago. It has been reported that very similar genes control the development of vertebrate and arthropod brains, and were likely inherited from their LCA. Genes that control brain development are conserved because brains generate adaptive behaviour. However, the neural processes that generate behaviour operate with the activated information in WM, so WM and attention must have existed prior to the evolution of brains. It is proposed that WM and attention are widespread amongst animal species because they are phylogenetically conserved mechanisms that are essential to all mental processing, and were inherited from the LCA of vertebrates, arthropods, and some other animal clades.
Collapse
|
12
|
Martí-Clua J. Times of neuron origin and neurogenetic gradients in mice Purkinje cells and deep cerebellar nuclei neurons during the development of the cerebellum. A review. Tissue Cell 2022; 78:101897. [DOI: 10.1016/j.tice.2022.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
|
13
|
Transit Amplifying Progenitors in the Cerebellum: Similarities to and Differences from Transit Amplifying Cells in Other Brain Regions and between Species. Cells 2022; 11:cells11040726. [PMID: 35203375 PMCID: PMC8870322 DOI: 10.3390/cells11040726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Transit amplification of neural progenitors/precursors is widely used in the development of the central nervous system and for tissue homeostasis. In most cases, stem cells, which are relatively less proliferative, first differentiate into transit amplifying cells, which are more proliferative, losing their stemness. Subsequently, transit amplifying cells undergo a limited number of mitoses and differentiation to expand the progeny of differentiated cells. This step-by-step proliferation is considered an efficient system for increasing the number of differentiated cells while maintaining the stem cells. Recently, we reported that cerebellar granule cell progenitors also undergo transit amplification in mice. In this review, we summarize our and others’ recent findings and the prospective contribution of transit amplification to neural development and evolution, as well as the molecular mechanisms regulating transit amplification.
Collapse
|
14
|
Bezerra AM, Citeli N, Galvão A, Carvalho-e-Silva SPD. Minimizing the damage: a methodological proposal to remove the brains of anurans and squamates. IHERINGIA. SERIE ZOOLOGIA 2022. [DOI: 10.1590/1678-4766e2022013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | - Ana Galvão
- Universidade Federal do Rio de Janeiro, Brazil
| | | |
Collapse
|
15
|
Pérez-Fernández J, Barandela M, Jiménez-López C. The Dopaminergic Control of Movement-Evolutionary Considerations. Int J Mol Sci 2021; 22:11284. [PMID: 34681941 PMCID: PMC8541398 DOI: 10.3390/ijms222011284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
Dopamine is likely the most studied modulatory neurotransmitter, in great part due to characteristic motor deficits in Parkinson's disease that arise after the degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNc). The SNc, together with the ventral tegmental area (VTA), play a key role modulating motor responses through the basal ganglia. In contrast to the large amount of existing literature addressing the mammalian dopaminergic system, comparatively little is known in other vertebrate groups. However, in the last several years, numerous studies have been carried out in basal vertebrates, allowing a better understanding of the evolution of the dopaminergic system, especially the SNc/VTA. We provide an overview of existing research in basal vertebrates, mainly focusing on lampreys, belonging to the oldest group of extant vertebrates. The lamprey dopaminergic system and its role in modulating motor responses have been characterized in significant detail, both anatomically and functionally, providing the basis for understanding the evolution of the SNc/VTA in vertebrates. When considered alongside results from other early vertebrates, data in lampreys show that the key role of the SNc/VTA dopaminergic neurons modulating motor responses through the basal ganglia was already well developed early in vertebrate evolution.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Center for Biomedical Research (CINBIO), Neurocircuits Group, Department of Functional Biology and Health Sciences, Campus Universitario Lagoas, Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (M.B.); (C.J.-L.)
| | | | | |
Collapse
|
16
|
Suzuki DG. Consciousness in Jawless Fishes. Front Syst Neurosci 2021; 15:751876. [PMID: 34630051 PMCID: PMC8497754 DOI: 10.3389/fnsys.2021.751876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Jawless fishes were the first vertebrates to evolve. It is thus important to investigate them to determine whether consciousness was acquired in the common ancestor of all vertebrates. Most jawless fish lineages are extinct, and cyclostomes (lampreys and hagfish) are the sole survivors. Here, I review the empirical knowledge on the neurobiology of cyclostomes with special reference to recently proposed "markers" of primary, minimal consciousness. The adult lamprey appears to meet the neuroanatomical criteria but there is a practical limitation to behavioral examination of its learning ability. In addition, the consciousness-related neuroarchitecture of larvae and its reconstruction during metamorphosis remain largely uninvestigated. Even less is known of hagfish neurobiology. The hagfish forebrain forms the central prosencephalic complex, and the homology of its components to the brain regions of other vertebrates needs to be confirmed using modern techniques. Nevertheless, as behavioral responses to olfactory stimuli in aquariums have been reported, it is easier to investigate the learning ability of the hagfish than that of the lamprey. Based on these facts, I finally discuss the potential future directions of empirical studies for examining the existence of consciousness in jawless fishes.
Collapse
Affiliation(s)
- Daichi G Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Sugahara F, Murakami Y, Pascual-Anaya J, Kuratani S. Forebrain Architecture and Development in Cyclostomes, with Reference to the Early Morphology and Evolution of the Vertebrate Head. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:305-317. [PMID: 34537767 DOI: 10.1159/000519026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022]
Abstract
The vertebrate head and brain are characterized by highly complex morphological patterns. The forebrain, the most anterior division of the brain, is subdivided into the diencephalon, hypothalamus, and telencephalon from the neuromeric subdivision into prosomeres. Importantly, the telencephalon contains the cerebral cortex, which plays a key role in higher order cognitive functions in humans. To elucidate the evolution of the forebrain regionalization, comparative analyses of the brain development between extant jawed and jawless vertebrates are crucial. Cyclostomes - lampreys and hagfishes - are the only extant jawless vertebrates, and diverged from jawed vertebrates (gnathostomes) over 500 million years ago. Previous developmental studies on the cyclostome brain were conducted mainly in lampreys because hagfish embryos were rarely available. Although still scarce, the recent availability of hagfish embryos has propelled comparative studies of brain development and gene expression. By integrating findings with those of cyclostomes and fossil jawless vertebrates, we can depict the morphology, developmental mechanism, and even the evolutionary path of the brain of the last common ancestor of vertebrates. In this review, we summarize the development of the forebrain in cyclostomes and suggest what evolutionary changes each cyclostome lineage underwent during brain evolution. In addition, together with recent advances in the head morphology in fossil vertebrates revealed by CT scanning technology, we discuss how the evolution of craniofacial morphology and the changes of the developmental mechanism of the forebrain towards crown gnathostomes are causally related.
Collapse
Affiliation(s)
- Fumiaki Sugahara
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Japan.,Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
18
|
Sugahara F, Pascual-Anaya J, Kuraku S, Kuratani S, Murakami Y. Genetic Mechanism for the Cyclostome Cerebellar Neurons Reveals Early Evolution of the Vertebrate Cerebellum. Front Cell Dev Biol 2021; 9:700860. [PMID: 34485287 PMCID: PMC8416312 DOI: 10.3389/fcell.2021.700860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
The vertebrate cerebellum arises at the dorsal part of rhombomere 1, induced by signals from the isthmic organizer. Two major cerebellar neuronal subtypes, granule cells (excitatory) and Purkinje cells (inhibitory), are generated from the anterior rhombic lip and the ventricular zone, respectively. This regionalization and the way it develops are shared in all extant jawed vertebrates (gnathostomes). However, very little is known about early evolution of the cerebellum. The lamprey, an extant jawless vertebrate lineage or cyclostome, possesses an undifferentiated, plate-like cerebellum, whereas the hagfish, another cyclostome lineage, is thought to lack a cerebellum proper. In this study, we found that hagfish Atoh1 and Wnt1 genes are co-expressed in the rhombic lip, and Ptf1a is expressed ventrally to them, confirming the existence of r1's rhombic lip and the ventricular zone in cyclostomes. In later stages, lamprey Atoh1 is downregulated in the posterior r1, in which the NeuroD increases, similar to the differentiation process of cerebellar granule cells in gnathostomes. Also, a continuous Atoh1-positive domain in the rostral r1 is reminiscent of the primordium of valvula cerebelli of ray-finned fishes. Lastly, we detected a GAD-positive domain adjacent to the Ptf1a-positive ventricular zone in lampreys, suggesting that the Ptf1a-positive cells differentiate into some GABAergic inhibitory neurons such as Purkinje and other inhibitory neurons like in gnathostomes. Altogether, we conclude that the ancestral genetic programs for the formation of a distinct cerebellum were established in the last common ancestor of vertebrates.
Collapse
Affiliation(s)
- Fumiaki Sugahara
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Japan.,Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain.,Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
19
|
Bennett MS. Five Breakthroughs: A First Approximation of Brain Evolution From Early Bilaterians to Humans. Front Neuroanat 2021; 15:693346. [PMID: 34489649 PMCID: PMC8418099 DOI: 10.3389/fnana.2021.693346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Retracing the evolutionary steps by which human brains evolved can offer insights into the underlying mechanisms of human brain function as well as the phylogenetic origin of various features of human behavior. To this end, this article presents a model for interpreting the physical and behavioral modifications throughout major milestones in human brain evolution. This model introduces the concept of a "breakthrough" as a useful tool for interpreting suites of brain modifications and the various adaptive behaviors these modifications enabled. This offers a unique view into the ordered steps by which human brains evolved and suggests several unique hypotheses on the mechanisms of human brain function.
Collapse
|
20
|
Suryanarayana SM, Pérez-Fernández J, Robertson B, Grillner S. The Lamprey Forebrain - Evolutionary Implications. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:318-333. [PMID: 34192700 DOI: 10.1159/000517492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
The forebrain plays a critical role in a broad range of neural processes encompassing sensory integration and initiation/selection of behaviour. The forebrain functions through an interaction between different cortical areas, the thalamus, the basal ganglia with the dopamine system, and the habenulae. The ambition here is to compare the mammalian forebrain with that of the lamprey representing the oldest now living group of vertebrates, by a review of earlier studies. We show that the lamprey dorsal pallium has a motor, a somatosensory, and a visual area with retinotopic representation. The lamprey pallium was previously thought to be largely olfactory. There is also a detailed similarity between the lamprey and mammals with regard to other forebrain structures like the basal ganglia in which the general organisation, connectivity, transmitters and their receptors, neuropeptides, and expression of ion channels are virtually identical. These initially unexpected results allow for the possibility that many aspects of the basic design of the vertebrate forebrain had evolved before the lamprey diverged from the evolutionary line leading to mammals. Based on a detailed comparison between the mammalian forebrain and that of the lamprey and with due consideration of data from other vertebrate groups, we propose a compelling account of a pan-vertebrate schema for basic forebrain structures, suggesting a common ancestry of over half a billion years of vertebrate evolution.
Collapse
Affiliation(s)
- Shreyas M Suryanarayana
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Juan Pérez-Fernández
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden.,CINBIO, Universidade de Vigo, Campus Universitario Lagoas, Vigo, Spain
| | - Brita Robertson
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
21
|
Martí-Clúa J. Incorporation of 5-Bromo-2'-deoxyuridine into DNA and Proliferative Behavior of Cerebellar Neuroblasts: All That Glitters Is Not Gold. Cells 2021; 10:cells10061453. [PMID: 34200598 PMCID: PMC8229392 DOI: 10.3390/cells10061453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
The synthetic halogenated pyrimidine analog, 5-bromo-2'-deoxyuridine (BrdU), is a marker of DNA synthesis. This exogenous nucleoside has generated important insights into the cellular mechanisms of the central nervous system development in a variety of animals including insects, birds, and mammals. Despite this, the detrimental effects of the incorporation of BrdU into DNA on proliferation and viability of different types of cells has been frequently neglected. This review will summarize and present the effects of a pulse of BrdU, at doses ranging from 25 to 300 µg/g, or repeated injections. The latter, following the method of the progressively delayed labeling comprehensive procedure. The prenatal and perinatal development of the cerebellum are studied. These current data have implications for the interpretation of the results obtained by this marker as an index of the generation, migration, and settled pattern of neurons in the developing central nervous system. Caution should be exercised when interpreting the results obtained using BrdU. This is particularly important when high or repeated doses of this agent are injected. I hope that this review sheds light on the effects of this toxic maker. It may be used as a reference for toxicologists and neurobiologists given the broad use of 5-bromo-2'-deoxyuridine to label dividing cells.
Collapse
Affiliation(s)
- Joaquín Martí-Clúa
- Unidad de Citología e Histología, Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Facultad de Biociencias, Institut de Neurociències, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
22
|
Shark and ray genomics for disentangling their morphological diversity and vertebrate evolution. Dev Biol 2021; 477:262-272. [PMID: 34102168 DOI: 10.1016/j.ydbio.2021.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022]
Abstract
Developmental studies of sharks and rays (elasmobranchs) have provided much insight into the process of morphological evolution of vertebrates. Although those studies are supposedly fueled by large-scale molecular sequencing information, whole-genome sequences of sharks and rays were made available only recently. One compelling difficulty of elasmobranch developmental biology is the low accessibility to embryonic study materials and their slow development. Another limiting factor is the relatively large size of their genomes. Moreover, their large body sizes restrict sustainable captive breeding, while their high body fluid osmolarity prevents reproducible cell culturing for in vitro experimentation, which has also limited our knowledge of their chromosomal organization for validation of genome sequencing products. This article focuses on egg-laying elasmobranch species used in developmental biology and provides an overview of the characteristics of the shark and ray genomes revealed to date. Developmental studies performed on a gene-by-gene basis are also reviewed from a whole-genome perspective. Among the popular regulatory genes studied in developmental biology, I scrutinize shark homologs of Wnt genes that highlight vanishing repertoires in many other vertebrate lineages, as well as Hox genes that underwent an unexpected modification unique to the elasmobranch lineage. These topics are discussed together with insights into the reconstruction of developmental programs in the common ancestor of vertebrates and its subsequent evolutionary trajectories that mark the features that are unique to, and those characterizing the diversity among, cartilaginous fishes.
Collapse
|
23
|
Benito-Gutiérrez È, Gattoni G, Stemmer M, Rohr SD, Schuhmacher LN, Tang J, Marconi A, Jékely G, Arendt D. The dorsoanterior brain of adult amphioxus shares similarities in expression profile and neuronal composition with the vertebrate telencephalon. BMC Biol 2021; 19:110. [PMID: 34020648 PMCID: PMC8139002 DOI: 10.1186/s12915-021-01045-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/06/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The evolutionary origin of the telencephalon, the most anterior part of the vertebrate brain, remains obscure. Since no obvious counterpart to the telencephalon has yet been identified in invertebrate chordates, it is difficult to trace telencephalic origins. One way to identify homologous brain parts between distantly related animal groups is to focus on the combinatorial expression of conserved regionalisation genes that specify brain regions. RESULTS Here, we report the combined expression of conserved transcription factors known to specify the telencephalon in the vertebrates in the chordate amphioxus. Focusing on adult specimens, we detect specific co-expression of these factors in the dorsal part of the anterior brain vesicle, which we refer to as Pars anterodorsalis (PAD). As in vertebrates, expression of the transcription factors FoxG1, Emx and Lhx2/9 overlaps that of Pax4/6 dorsally and of Nkx2.1 ventrally, where we also detect expression of the Hedgehog ligand. This specific pattern of co-expression is not observed prior to metamorphosis. Similar to the vertebrate telencephalon, the amphioxus PAD is characterised by the presence of GABAergic neurons and dorsal accumulations of glutamatergic as well as dopaminergic neurons. We also observe sustained proliferation of neuronal progenitors at the ventricular zone of the amphioxus brain vesicle, as observed in the vertebrate brain. CONCLUSIONS Our findings suggest that the PAD in the adult amphioxus brain vesicle and the vertebrate telencephalon evolved from the same brain precursor region in ancestral chordates, which would imply homology of these structures. Our comparative data also indicate that this ancestral brain already contained GABA-, glutamatergic and dopaminergic neurons, as is characteristic for the olfactory bulb of the vertebrate telencephalon. We further speculate that the telencephalon might have evolved in vertebrates via a heterochronic shift in developmental timing.
Collapse
Affiliation(s)
- Èlia Benito-Gutiérrez
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Manuel Stemmer
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Present Address: Max-Planck Institute for Neurobiology in Martinsried, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Silvia D Rohr
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Laura N Schuhmacher
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Present Address: Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jocelyn Tang
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Aleksandra Marconi
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| |
Collapse
|
24
|
Kraus A, Buckley KM, Salinas I. Sensing the world and its dangers: An evolutionary perspective in neuroimmunology. eLife 2021; 10:66706. [PMID: 33900197 PMCID: PMC8075586 DOI: 10.7554/elife.66706] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Detecting danger is key to the survival and success of all species. Animal nervous and immune systems cooperate to optimize danger detection. Preceding studies have highlighted the benefits of bringing neurons into the defense game, including regulation of immune responses, wound healing, pathogen control, and survival. Here, we summarize the body of knowledge in neuroimmune communication and assert that neuronal participation in the immune response is deeply beneficial in each step of combating infection, from inception to resolution. Despite the documented tight association between the immune and nervous systems in mammals or invertebrate model organisms, interdependence of these two systems is largely unexplored across metazoans. This review brings a phylogenetic perspective of the nervous and immune systems in the context of danger detection and advocates for the use of non-model organisms to diversify the field of neuroimmunology. We identify key taxa that are ripe for investigation due to the emergence of key evolutionary innovations in their immune and nervous systems. This novel perspective will help define the primordial principles that govern neuroimmune communication across taxa.
Collapse
Affiliation(s)
- Aurora Kraus
- Department of Biology, University of New Mexico, Albuquerque, United States
| | | | - Irene Salinas
- Department of Biology, University of New Mexico, Albuquerque, United States
| |
Collapse
|
25
|
Li S, Wang F. Vertebrate Evolution Conserves Hindbrain Circuits despite Diverse Feeding and Breathing Modes. eNeuro 2021; 8:ENEURO.0435-20.2021. [PMID: 33707205 PMCID: PMC8174041 DOI: 10.1523/eneuro.0435-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Feeding and breathing are two functions vital to the survival of all vertebrate species. Throughout the evolution, vertebrates living in different environments have evolved drastically different modes of feeding and breathing through using diversified orofacial and pharyngeal (oropharyngeal) muscles. The oropharyngeal structures are controlled by hindbrain neural circuits. The developing hindbrain shares strikingly conserved organizations and gene expression patterns across vertebrates, thus begs the question of how a highly conserved hindbrain generates circuits subserving diverse feeding/breathing patterns. In this review, we summarize major modes of feeding and breathing and principles underlying their coordination in many vertebrate species. We provide a hypothesis for the existence of a common hindbrain circuit at the phylotypic embryonic stage controlling oropharyngeal movements that is shared across vertebrate species; and reconfiguration and repurposing of this conserved circuit give rise to more complex behaviors in adult higher vertebrates.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurobiology, Duke University, Durham, NC 27710
| | - Fan Wang
- Department of Neurobiology, Duke University, Durham, NC 27710
| |
Collapse
|
26
|
Ermakova GV, Kucheryavyy AV, Zaraisky AG, Bayramov AV. Comparative Analysis of Expression Patterns of the Noggin Gene Family Genes at the Early Development Stages of Head Structures in the European River Lamprey Lampetra fluviatilis. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Jager P, Moore G, Calpin P, Durmishi X, Salgarella I, Menage L, Kita Y, Wang Y, Kim DW, Blackshaw S, Schultz SR, Brickley S, Shimogori T, Delogu A. Dual midbrain and forebrain origins of thalamic inhibitory interneurons. eLife 2021; 10:e59272. [PMID: 33522480 PMCID: PMC7906600 DOI: 10.7554/elife.59272] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
The ubiquitous presence of inhibitory interneurons in the thalamus of primates contrasts with the sparsity of interneurons reported in mice. Here, we identify a larger than expected complexity and distribution of interneurons across the mouse thalamus, where all thalamic interneurons can be traced back to two developmental programmes: one specified in the midbrain and the other in the forebrain. Interneurons migrate to functionally distinct thalamocortical nuclei depending on their origin: the abundant, midbrain-derived class populates the first and higher order sensory thalamus while the rarer, forebrain-generated class is restricted to some higher order associative regions. We also observe that markers for the midbrain-born class are abundantly expressed throughout the thalamus of the New World monkey marmoset. These data therefore reveal that, despite the broad variability in interneuron density across mammalian species, the blueprint of the ontogenetic organisation of thalamic interneurons of larger-brained mammals exists and can be studied in mice.
Collapse
Affiliation(s)
- Polona Jager
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Gerald Moore
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
- Department of Life Sciences and Centre for Neurotechnology, Imperial College LondonLondonUnited Kingdom
| | - Padraic Calpin
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
| | - Xhuljana Durmishi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Irene Salgarella
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Lucy Menage
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | | | - Yan Wang
- RIKEN, Center for Brain Science (CBS)SaitamaJapan
| | - Dong Won Kim
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Seth Blackshaw
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Simon R Schultz
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Stephen Brickley
- Department of Life Sciences and Centre for Neurotechnology, Imperial College LondonLondonUnited Kingdom
| | | | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
28
|
Etchegaray E, Naville M, Volff JN, Haftek-Terreau Z. Transposable element-derived sequences in vertebrate development. Mob DNA 2021; 12:1. [PMID: 33407840 PMCID: PMC7786948 DOI: 10.1186/s13100-020-00229-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Transposable elements (TEs) are major components of all vertebrate genomes that can cause deleterious insertions and genomic instability. However, depending on the specific genomic context of their insertion site, TE sequences can sometimes get positively selected, leading to what are called "exaptation" events. TE sequence exaptation constitutes an important source of novelties for gene, genome and organism evolution, giving rise to new regulatory sequences, protein-coding exons/genes and non-coding RNAs, which can play various roles beneficial to the host. In this review, we focus on the development of vertebrates, which present many derived traits such as bones, adaptive immunity and a complex brain. We illustrate how TE-derived sequences have given rise to developmental innovations in vertebrates and how they thereby contributed to the evolutionary success of this lineage.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| |
Collapse
|
29
|
Zhu T, Li Y, Pang Y, Han Y, Li J, Wang Z, Liu X, Li H, Hua Y, Jiang H, Teng H, Quan J, Liu Y, Geng M, Li M, Hui F, Liu J, Qiu Q, Li Q, Ren Y. Chromosome-level genome assembly of Lethenteron reissneri provides insights into lamprey evolution. Mol Ecol Resour 2020; 21:448-463. [PMID: 33053263 DOI: 10.1111/1755-0998.13279] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/29/2022]
Abstract
The reissner lamprey Lethenteron reissneri, belonging to the class Cyclostomata, serves as a bridge between invertebrates and jawed vertebrates, and is considered the sister group of jawed vertebrates. However, despite this evolutionary significance, the genetic mechanisms underlying the adaptive evolution of the lamprey lineage remain unclear. Here, we assembled a 1.06 Gb chromosome-level draft genome of L. reissneri, with 72 chromosomes (ranging in length from 4.5 Mb to 25.9 Mb) and a scaffold N50 length of 13.23 Mb. Genome quality comparisons revealed that the reissner lamprey genome has higher completeness and contiguity than the previously published sea lamprey and Japanese lamprey genomes. Moreover, reissner lamprey, sea lamprey, and Japanese lamprey species share similar transposable element profiles and Hox gene cluster compositions, suggesting that a burst of transposable element activity and whole genome duplication occurred before their divergence. Additionally, the Lip gene copy numbers, which have been studied for their functions in the host defence system, were found to be expanded uniquely in lamprey lineages, suggesting key roles for these genes in lamprey evolution and adaptation. We also identified two neural-related genes, Nrn1 and Unc13a, with copy number expansions in jawed vertebrates, which may be functionally relevant to the origin of lamprey brains. Hence, this study not only provides the first chromosome-level reference genome for Cyclostomata, but also highlights features of the unique biology and adaptive evolution of the lamprey lineage.
Collapse
Affiliation(s)
- Ting Zhu
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jun Li
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xin Liu
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yishan Hua
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Hui Jiang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Hongming Teng
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jian Quan
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yu Liu
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Ming Geng
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Meiao Li
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Fan Hui
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jinzhao Liu
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yandong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
30
|
The immune system of jawless vertebrates: insights into the prototype of the adaptive immune system. Immunogenetics 2020; 73:5-16. [PMID: 33159554 DOI: 10.1007/s00251-020-01182-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/23/2020] [Indexed: 01/23/2023]
Abstract
Jawless vertebrates diverged from an ancestor of jawed vertebrates approximately 550 million years ago. They mount adaptive immune responses to repetitive antigenic challenges, despite lacking major histocompatibility complex molecules, immunoglobulins, T cell receptors, and recombination-activating genes. Instead of B cell and T cell receptors, agnathan lymphocytes express unique antigen receptors named variable lymphocyte receptors (VLRs), which generate diversity through a gene conversion-like mechanism. Although gnathostome antigen receptors and VLRs are structurally unrelated, jawed and jawless vertebrates share essential features of lymphocyte-based adaptive immunity, including the expression of a single type of receptor on each lymphocyte, clonal expansion of antigen-stimulated lymphocytes, and the dichotomy of cellular and humoral immunity, indicating that the backbone of the adaptive immune system was established in a common ancestor of all vertebrates. Furthermore, recent evidence indicates that, unlike previously thought, agnathans have a unique classical pathway of complement activation where VLRB molecules act as antibodies instead of immunoglobulins. It seems likely that the last common ancestor of all vertebrates had an adaptive immune system resembling that of jawless vertebrates, suggesting that, as opposed to jawed vertebrates, agnathans have retained the prototype of vertebrate adaptive immunity.
Collapse
|
31
|
Pujades C. The multiple functions of hindbrain boundary cells: Tinkering boundaries? Semin Cell Dev Biol 2020; 107:179-189. [DOI: 10.1016/j.semcdb.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 02/01/2023]
|
32
|
Discovery of four Noggin genes in lampreys suggests two rounds of ancient genome duplication. Commun Biol 2020; 3:501. [PMID: 32913324 PMCID: PMC7483449 DOI: 10.1038/s42003-020-01234-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023] Open
Abstract
The secreted protein Noggin1 was the first discovered natural embryonic inducer produced by cells of the Spemann organizer. Thereafter, it was shown that vertebrates have a whole family of Noggin genes with different expression patterns and functional properties. For example, Noggin1 and Noggin2 inhibit the activity of BMP, Nodal/Activin and Wnt-beta-catenin signalling, while Noggin4 cannot suppress BMP but specifically modulates Wnt signalling. In this work, we described and investigated phylogeny and expression patterns of four Noggin genes in lampreys, which represent the most basally divergent group of extant vertebrates, the cyclostomes, belonging to the superclass Agnatha. Assuming that lampreys have Noggin homologues in all representatives of another superclass of vertebrates, the Gnathostomata, we propose a model for Noggin family evolution in vertebrates. This model is in agreement with the hypotheses suggesting two rounds of genome duplication in the ancestor of vertebrates before the divergence of Agnatha and Gnathostomata. Ermakova et al. report four Noggin genes in lampreys and using phylogenetics, gene synteny analysis, and in situ hybridization, suggest that the Noggin gene underwent two rounds of duplication and evolved specific functions before the divergence of vertebrate and lamprey lineages. These findings offer insight into early vertebrate genome and developmental evolution.
Collapse
|
33
|
Bayramov AV, Ermakova GV, Zaraisky AG. Genetic Mechanisms of the Early Development of the Telencephalon, a Unique Segment of the Vertebrate Central Nervous System, as Reflecting Its Emergence and Evolution. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Martinez P, Sprecher SG. Of Circuits and Brains: The Origin and Diversification of Neural Architectures. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
35
|
The evolutionary origin of visual and somatosensory representation in the vertebrate pallium. Nat Ecol Evol 2020; 4:639-651. [DOI: 10.1038/s41559-020-1137-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
|
36
|
Perks KE, Krotinger A, Bodznick D. A cerebellum-like circuit in the lateral line system of fish cancels mechanosensory input associated with its own movements. J Exp Biol 2020; 223:jeb204438. [PMID: 31953367 DOI: 10.1242/jeb.204438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/08/2020] [Indexed: 01/03/2023]
Abstract
An animal's own movement exerts a profound impact on sensory input to its nervous system. Peripheral sensory receptors do not distinguish externally generated stimuli from stimuli generated by an animal's own behavior (reafference) - although the animal often must. One way that nervous systems can solve this problem is to provide movement-related signals (copies of motor commands and sensory feedback) to sensory systems, which can then be used to generate predictions that oppose or cancel out sensory responses to reafference. Here, we studied the use of movement-related signals to generate sensory predictions in the lateral line medial octavolateralis nucleus (MON) of the little skate. In the MON, mechanoreceptive afferents synapse on output neurons that also receive movement-related signals from central sources, via a granule cell parallel fiber system. This parallel fiber system organization is characteristic of a set of so-called cerebellum-like structures. Cerebellum-like structures have been shown to support predictive cancellation of reafference in the electrosensory systems of fish and the auditory system of mice. Here, we provide evidence that the parallel fiber system in the MON can generate predictions that are negative images of (and therefore cancel) sensory input associated with respiratory and fin movements. The MON, found in most aquatic vertebrates, is probably one of the most primitive cerebellum-like structures and a starting point for cerebellar evolution. The results of this study contribute to a growing body of work that uses an evolutionary perspective on the vertebrate cerebellum to understand its functional diversity in animal behavior.
Collapse
Affiliation(s)
- Krista E Perks
- Neurosciences Department and Zuckermann Institute, Columbia University, New York, NY 10027, USA
- Neuroscience & Behavior Program and Department of Biology, Wesleyan University, Middletown, CT 06459, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Anna Krotinger
- Neuroscience & Behavior Program and Department of Biology, Wesleyan University, Middletown, CT 06459, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - David Bodznick
- Neuroscience & Behavior Program and Department of Biology, Wesleyan University, Middletown, CT 06459, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
37
|
The expression of FoxG1 in the early development of the European river lamprey Lampetra fluviatilis demonstrates significant heterochrony with that in other vertebrates. Gene Expr Patterns 2019; 34:119073. [PMID: 31574305 DOI: 10.1016/j.gep.2019.119073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 01/11/2023]
Abstract
FoxG1, a member of the Fox/Forkhead family of winged helix transcription factors, plays key roles in the induction and spatial compartmentalization of the telencephalon in vertebrates. Loss- and gain-of-function experiments have established FoxG1 as a maintenance factor for neural progenitors and a crucial player in the specification of the ventral telencephalon (subpallium). For the first time in evolution, the telencephalon appeared in the ancestors of vertebrates, including cyclostomes. However, although FoxG1 homologues are present in cyclostomes (i.e., in lampreys and hagfishes), no systematic study of the spatial-temporal expression of FoxG1 during the embryonic development of these animals has been carried out. Given these findings, we have now studied FoxG1 spatial-temporal expression patterns in the early development of the European river lamprey Lampetra fluviatilis. We show that in contrast to other vertebrates, in which the expression of FoxG1 begins during neurulation, the expression of this gene in L. fluviatilis starts after neurulation, first at stage 21 (early head protrusion) in the area of the otic placodes and then, beginning from stage 22, in the telencephalon. Such heterochrony of FoxG1 expression in the lamprey may reflect the fact that in this basally divergent representative of vertebrates, telencephalon specification occurs relatively late. This heterochrony could be related to the evolutionary history of the telencephalon, with a recent appearance in vertebrates as an extension to more ancient anterior brain regions. Another peculiarity of FoxG1 expression in lamprey, compared to other vertebrates, is that it is not expressed in the lamprey optic structures.
Collapse
|
38
|
Bayramov AV, Ermakova GV, Kucheryavyy AV, Zaraisky AG. Lampreys, “Living Fossils,” in Research on Early Development and Regeneration in Vertebrates. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360418080015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Axonal Ensheathment in the Nervous System of Lamprey: Implications for the Evolution of Myelinating Glia. J Neurosci 2018; 38:6586-6596. [PMID: 29941446 DOI: 10.1523/jneurosci.1034-18.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 11/21/2022] Open
Abstract
In the nervous system, myelination of axons enables rapid impulse conduction and is a specialized function of glial cells. Myelinating glia are the last cell type to emerge in the evolution of vertebrate nervous systems, presumably in ancient jawed vertebrates (gnathostomata) because jawless vertebrates (agnathans) lack myelin. We have hypothesized that, in these unmyelinated species, evolutionary progenitors of myelinating cells must have existed that should still be present in contemporary agnathan species. Here, we used advanced electron microscopic techniques to reveal axon-glia interactions in the sea lamprey Petromyzon marinus By quantitative assessment of the spinal cord and the peripheral lateral line nerve, we observed a marked maturation-dependent growth of axonal calibers. In peripheral nerves, all axons are ensheathed by glial cells either in bundles or, when larger than the threshold caliber of 3 μm, individually. The ensheathing glia are covered by a basal lamina and express SoxE-transcription factors, features of mammalian Remak-type Schwann cells. In larval lamprey, the ensheathment of peripheral axons leaves gaps that are closed in adults. CNS axons are also covered to a considerable extent by glial processes, which contain a high density of intermediate filaments, glycogen particles, large lipid droplets, and desmosomes, similar to mammalian astrocytes. Indeed, by in situ hybridization, these glial cells express the astrocyte marker Aldh1l1 Specimens were of unknown sex. Our observations imply that radial sorting, ensheathment, and presumably also metabolic support of axons are ancient functions of glial cells that predate the evolutionary emergence of myelin in jawed vertebrates.SIGNIFICANCE STATEMENT We used current electron microscopy techniques to examine axon-glia units in a nonmyelinated vertebrate species, the sea lamprey. In the PNS, lamprey axons are fully ensheathed either individually or in bundles by cells ortholog to Schwann cells. In the CNS, axons associate with astrocyte orthologs, which contain glycogen and lipid droplets. We suggest that ensheathment, radial sorting, and metabolic support of axons by glial cells predate the evolutionary emergence of myelin in ancient jawed vertebrates.
Collapse
|
40
|
Suryanarayana SM, Robertson B, Wallén P, Grillner S. The Lamprey Pallium Provides a Blueprint of the Mammalian Layered Cortex. Curr Biol 2017; 27:3264-3277.e5. [PMID: 29056451 DOI: 10.1016/j.cub.2017.09.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022]
Abstract
The basic architecture of the mammalian neocortex is remarkably similar across species. Pallial structures in the reptilian brain are considered amniote precursors of mammalian neocortex, whereas pallia of anamniotes ("lower" vertebrates) have been deemed largely insignificant with respect to homology. Here, we examine the cytoarchitecture of the lateral pallium in the lamprey, the phylogenetically oldest group of extant vertebrates. We reveal a three-layered structure with similar excitatory cell types as in the mammalian cortex and GABAergic interneurons. The ventral parts are sensory areas receiving monosynaptic thalamic input that can be activated from the optic nerve, whereas the dorsal parts contain motor areas with efferent projections to the brainstem, receiving oligosynaptic thalamic input. Both regions receive monosynaptic olfactory input. This three-layered "primordial" lamprey lateral pallium has evolved most features of the three-layered reptilian cortices and is thereby a precursor of the six-layered "neo" cortex with a long-standing evolutionary precedent (some 500 million years ago).
Collapse
Affiliation(s)
| | - Brita Robertson
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Peter Wallén
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
41
|
Laclef C, Métin C. Conserved rules in embryonic development of cortical interneurons. Semin Cell Dev Biol 2017; 76:86-100. [PMID: 28918121 DOI: 10.1016/j.semcdb.2017.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022]
Abstract
This review will focus on early aspects of cortical interneurons (cIN) development from specification to migration and final positioning in the human cerebral cortex. These mechanisms have been largely studied in the mouse model, which provides unique possibilities of genetic analysis, essential to dissect the molecular and cellular events involved in cortical development. An important goal here is to discuss the conservation and the potential divergence of these mechanisms, with a particular interest for the situation in the human embryo. We will thus cover recent works, but also revisit older studies in the light of recent data to better understand the developmental mechanisms underlying cIN differentiation in human. Because cIN are implicated in severe developmental disorders, understanding the molecular and cellular mechanisms controlling their differentiation might clarify some causes and potential therapeutic approaches to these important clinical conditions.
Collapse
Affiliation(s)
- Christine Laclef
- INSERM, UMR-S839, Paris, France; Sorbonne Universités, UPMC University Paris 6, UMR-S839, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Christine Métin
- INSERM, UMR-S839, Paris, France; Sorbonne Universités, UPMC University Paris 6, UMR-S839, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
42
|
Kawakami K, Murakami Y. Preface to Vertebrate Brains: evolution, structures and functions. Dev Growth Differ 2017. [DOI: 10.1111/dgd.12375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koichi Kawakami
- Division of Molecular and Developmental Biology; National Institute of Genetics; Department of Genetics; SOKENDAI (The Graduate University for Advanced Studies); 1111 Yata Mishima Shizuoka 411-8540 Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering; Ehime University; 2-5 Bunkyo-cho Matsuyama 790-8577 Japan
| |
Collapse
|