1
|
Dua I, Yampolsky LY. Transcriptional atlas of Daphnia magna. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101504. [PMID: 40199048 DOI: 10.1016/j.cbd.2025.101504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
Transcriptomics studies are more likely to achieve predictive results when they rely on tissue- and cell-specific transcriptional data. Identification of cell types in novel model organisms by their transcriptional profiles is difficult without data on transcriptional differences among major tissues and anatomical features. Here we report the first dataset on tissue- and organ-specific transcriptomics in freshwater plankton crustacean Daphnia magna, reporting markers of embryos, hemocytes, gut, carapace, antennae-2, and head, as well as the remaining carcass. Embryos are the most transcriptionally different from adults' features, with antennae and carapace being the most differentiated among them. We demonstrate that transcriptional markers of embryos vs. adults and of various adult anatomical features can be used to provide validation and functional explanation to published differential expression in response to environmental factors like infection, hypoxia, toxicants, or kairomones; to annotate Daphnia single cell data; and to ask questions about transcriptional diversification within extended gene families.
Collapse
Affiliation(s)
- Ishaan Dua
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37615, USA; University of Tennessee Health Science Center College of Medicine, 920 Madison Ave, Memphis TN 38163
| | - Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37615, USA.
| |
Collapse
|
2
|
Kulakova MA, Maslakov GP, Poliushkevich LO. Irreducible Complexity of Hox Gene: Path to the Canonical Function of the Hox Cluster. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:987-1001. [PMID: 38981695 DOI: 10.1134/s0006297924060014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 07/11/2024]
Abstract
The evolution of major taxa is often associated with the emergence of new gene families. In all multicellular animals except sponges and comb jellies, the genomes contain Hox genes, which are crucial regulators of development. The canonical function of Hox genes involves colinear patterning of body parts in bilateral animals. This general function is implemented through complex, precisely coordinated mechanisms, not all of which are evolutionarily conserved and fully understood. We suggest that the emergence of this regulatory complexity was preceded by a stage of cooperation between more ancient morphogenetic programs or their individual elements. Footprints of these programs may be present in modern animals to execute non-canonical Hox functions. Non-canonical functions of Hox genes are involved in maintaining terminal nerve cell specificity, autophagy, oogenesis, pre-gastrulation embryogenesis, vertical signaling, and a number of general biological processes. These functions are realized by the basic properties of homeodomain protein and could have triggered the evolution of ParaHoxozoa and Nephrozoa subsequently. Some of these non-canonical Hox functions are discussed in our review.
Collapse
Affiliation(s)
- Milana A Kulakova
- Department of Embryology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - Georgy P Maslakov
- Department of Embryology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Liudmila O Poliushkevich
- Department of Embryology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
3
|
Holtz MA, Racicot R, Preininger D, Stuckert AMM, Mangiamele LA. Genome assembly of the foot-flagging frog, Staurois parvus: a resource for understanding mechanisms of behavior. G3 (BETHESDA, MD.) 2023; 13:jkad193. [PMID: 37625789 PMCID: PMC10542557 DOI: 10.1093/g3journal/jkad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/22/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
Elaborate and skilled movements of the body have been selected in a variety of species as courtship and rivalry signals. One roadblock in studying these behaviors has been a lack of resources for understanding how they evolved at the genetic level. The Bornean rock frog (Staurois parvus) is an ideal species in which to address this issue. Males wave their hindlimbs in a "foot-flagging" display when competing for mates. The evolution of foot flagging in S. parvus and other species is accompanied by increases in the expression of the androgen receptor gene within its neuromuscular system, but it remains unclear what genetic or transcriptional changes are associated with this behavioral phenotype. We have now assembled the genome of S. parvus, resulting in 3.98 Gbp of 22,402 contigs with an N50 of 611,229 bp. The genome will be a resource for finding genes related to the physiology underlying foot flagging and to adaptations of the neuromuscular system. As a first application of the genome, we also began work in comparative genomics and differential gene expression analysis. We show that the androgen receptor is diverged from other anuran species, and we identify unique expression patterns of genes in the spinal cord and leg muscle that are important for axial patterning, cell specification and morphology, or muscle contraction. This genome will continue to be an important tool for future -omics studies to understand the evolution of elaborate signaling behaviors in this and potentially related species.
Collapse
Affiliation(s)
- Mika A Holtz
- Department of Biological Sciences, Smith College, Northampton, MA 01053, USA
| | - Riccardo Racicot
- Department of Biological Sciences, Smith College, Northampton, MA 01053, USA
| | - Doris Preininger
- Vienna Zoo, 1130 Vienna, Austria
- Department of Evolutionary Biology, University of Vienna, 1030 Vienna, Austria
| | - Adam M M Stuckert
- Department of Biology & Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Lisa A Mangiamele
- Department of Biological Sciences, Smith College, Northampton, MA 01053, USA
| |
Collapse
|
4
|
Ma X, Yan X, Ke R, Shan H, Rehman SU, Feng T, Zheng Y, Chuang C, Zhou W, Liu Q, Zheng J. Comparative Transcriptome Sequencing Analysis of Hirudo nipponia in Different Growth Periods. Front Physiol 2022; 13:873831. [PMID: 35812329 PMCID: PMC9259933 DOI: 10.3389/fphys.2022.873831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Hirudo nipponia is the only blood-sucking leech included in Chinese Pharmacopoeia having distinct features of anticoagulation, exorcizing blood stasis, and promoting menstruation. Despite such significant characteristics, very little is known about its molecular genetics and related physiological mechanisms. In this study, the transcriptomes of H. nipponia at three developmental stages (larvae, young, and adults), revealed a total of 1,348 differentially expressed genes (DEGs), 223 differentially expressed lncRNAs, and 88 novel mRNAs. A significant diverse gene expression patterns were observed at different developmental stages which were analyzed by differential gene expression trends, and the overall gene expression trends consist of three overall down-regulated trends, and two overall up-regulated trends. Furthermore, the GO and KEGG enrichment functional annotation analysis revealed that these DEGs were mainly associated with protein hydrolysis, signal transduction, energy metabolism, and lipid metabolism while growth, development, metabolism, and reproduction-related DEGs were also found. Additionally, real-time quantitative PCR results confirmed deep sequencing results based on the relative expression levels of nine randomly selected genes. This is the first transcriptome-based comprehensive study of H. irudo nipponia at different developmental stages which provided considerable deep understanding related to gene expression patterns and their relevant developmental pathways, neurodevelopmental and reproductive characteristics of the leech.
Collapse
Affiliation(s)
- Xiaocong Ma
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xiuying Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Ren Ke
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Huiquan Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Tong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yalin Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Chen Chuang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weiguan Zhou
- Thai Natural Hirudin Co, Ltd., Bangkok, Thailand
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Qingyou Liu, ; Jinghui Zheng,
| | - Jinghui Zheng
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Qingyou Liu, ; Jinghui Zheng,
| |
Collapse
|
5
|
Patel JH, Schattinger PA, Takayoshi EE, Wills AE. Hif1α and Wnt are required for posterior gene expression during Xenopus tropicalis tail regeneration. Dev Biol 2022; 483:157-168. [PMID: 35065905 PMCID: PMC8881967 DOI: 10.1016/j.ydbio.2022.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/16/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Abstract
Regeneration of complex tissues is initiated by an injury-induced stress response, eventually leading to activation of developmental signaling pathways such as Wnt signaling. How early injury cues are interpreted and coupled to activation of these developmental signals and their targets is not well understood. Here, we show that Hif1α, a stress induced transcription factor, is required for tail regeneration in Xenopus tropicalis. We find that Hif1α is required for regeneration of differentiated axial tissues, including axons and muscle. Using RNA-sequencing, we find that Hif1α and Wnt converge on a broad set of genes required for posterior specification and differentiation, including the posterior hox genes. We further show that Hif1α is required for transcription via a Wnt-responsive element, a function that is conserved in both regeneration and early neural patterning. Our findings indicate that Hif1α has regulatory roles in Wnt target gene expression across multiple tissue contexts.
Collapse
Affiliation(s)
- Jeet H. Patel
- Department of Biochemistry, University of Washington, Seattle WA,Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle WA
| | | | | | - Andrea E. Wills
- Department of Biochemistry, University of Washington, Seattle WA,Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle WA,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle WA,To whom correspondence should be addressed:
| |
Collapse
|
6
|
Xu Y, Li L, Zheng J, Wang M, Jiang B, Zhai Y, Lu L, Zhang C, Kuang Z, Yang X, Jin LN, Lin G, Zhang C. Pharmacological modulation of the cAMP signaling of two isoforms of melanocortin-3 receptor by melanocortin receptor accessory proteins in the tetrapod Xenopus laevis. Endocr Connect 2021; 10:1477-1488. [PMID: 34678757 PMCID: PMC8630767 DOI: 10.1530/ec-21-0179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
As a member of the seven-transmembrane rhodopsin-like G protein-coupled receptor superfamily, the melanocortin-3 receptor (MC3R) is vital for the regulation of energy homeostasis and rhythms synchronizing in mammals, and its pharmacological effect could be directly influenced by the presence of melanocortin receptor accessory proteins (MRAPs), MRAP1 and MRAP2. The tetrapod amphibian Xenopus laevis (xl) retains higher duplicated genome than extant teleosts and serves as an ideal model system for embryonic development and physiological studies. However, the melanocortin system of the Xenopus laevis has not yet been thoroughly evaluated. In this work, we performed sequence alignment, phylogenetic tree, and synteny analysis of two xlMC3Rs. Co-immunoprecipitation and immunofluorescence assay further confirmed the co-localization and in vitro interaction of xlMC3Rs with xlMRAPs on the plasma membrane. Our results demonstrated that xlMRAP2.L/S could improve α-MSH-stimulated xlMC3Rs signaling and suppress their surface expression. Moreover, xlMC3R.L showed a similar profile on the ligands and surface expression in the presence of xlMRAP1.L. Overall, the distinct pharmacological modulation of xlMC3R.L and xlMC3R.S by dual MRAP2 proteins elucidated the functional consistency of melanocortin system during genomic duplication of tetrapod vertebrates.
Collapse
Affiliation(s)
- Ying Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lei Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jihong Zheng
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Wang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bopei Jiang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yue Zhai
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liumei Lu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhe Kuang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaomei Yang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Correspondence should be addressed to X Yang or L-N Jin or G Lin or C Zhang: or or or
| | - Li-Na Jin
- Department of Hematology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Correspondence should be addressed to X Yang or L-N Jin or G Lin or C Zhang: or or or
| | - Gufa Lin
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Correspondence should be addressed to X Yang or L-N Jin or G Lin or C Zhang: or or or
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Correspondence should be addressed to X Yang or L-N Jin or G Lin or C Zhang: or or or
| |
Collapse
|
7
|
Disappearance of Temporal Collinearity in Vertebrates and Its Eventual Reappearance. BIOLOGY 2021; 10:biology10101018. [PMID: 34681117 PMCID: PMC8533308 DOI: 10.3390/biology10101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary In 1999 T. Kondo and D. Duboule performed excisions of posterior upstream DNA domains in mouse embryos and they observed that for an extended excision (including Evx gene) the Hox genes of the cluster were simultaneously expressed with the first Hoxd1 gene ‘as if’ Temporal Collinearity (TC) had disappeared. According to a Biophysical Model (BM) during Hox gene expression, Hox clusters behave similar toexpanding elastic springs. For the extended upstream DNA excision, BM predicts the TC disappearance and an experiment is proposed to test this BM prediction. In the chick limb bud C. Tickle et al. observed that the excision of the apical ectodermal ridge (AER) caused the inhibition of HoxA13 expression. However, the implantation of FGF soaked beads at the tip of the limb could surprisingly rescue HoxA13 expression after 24 h so that TC is restored.Brachyury transcription factor (TF) is essential in identifying the targets of this transcription and a chromatin immunoprecipitation microarray chip (ChIP-chip) was produced which can be inserted in the mouse embryonic cells. It is here proposed to insert this chip in the mutant cells where TC has disappeared and compare it to the limb bud case.Is TC restored? It is an important issue worth exploring. Abstract It was observed that a cluster of ordered genes (Hox1, Hox2, Hox3…) in the genome are activated in the ontogenetic units (1, 2, 3 …) of an embryo along the Anterior/Posterior axis following the same order of the Hox genes. This Spatial Collinearity (SC) is very strange since it correlates events of very different spatial dimensions. It was later observed in vertebrates, that, in the above ordering, first is Hox1expressed in ontogenetic unit 1, followed later by Hox2 in unit 2 and even later Hox3 in unit 3. This temporal collinearity (TC) is an enigma and even to-day is explored in depth. In 1999 T. Kondo and D. Duboule, after posterior upstream extended DNA excisions, concluded that the Hox cluster behaves ‘as if’ TC disappears. Here the consideration of TC really disappearing is taken face value and its repercussions are analyzed. Furthermore, an experiment is proposed to test TC disappearance. An outcome of this experiment could be the reappearance (partial or total) of TC.
Collapse
|
8
|
Physical Laws Shape Up HOX Gene Collinearity. J Dev Biol 2021; 9:jdb9020017. [PMID: 34066586 PMCID: PMC8162341 DOI: 10.3390/jdb9020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023] Open
Abstract
Hox gene collinearity (HGC) is a multi-scalar property of many animal phyla particularly important in embryogenesis. It relates entities and events occurring in Hox clusters inside the chromosome DNA and in embryonic tissues. These two entities differ in linear size by more than four orders of magnitude. HGC is observed as spatial collinearity (SC), where the Hox genes are located in the order (Hox1, Hox2, Hox3 …) along the 3′ to 5′ direction of DNA in the genome and a corresponding sequence of ontogenetic units (E1, E2, E3, …) located along the Anterior—Posterior axis of the embryo. Expression of Hox1 occurs in E1, Hox2 in E2, Hox3 in E3, etc. Besides SC, a temporal collinearity (TC) has been also observed in many vertebrates. According to TC, first Hox1 is expressed in E1; later, Hox2 is expressed in E2, followed by Hox3 in E3, etc. Lately, doubt has been raised about whether TC really exists. A biophysical model (BM) was formulated and tested during the last 20 years. According to BM, physical forces are created which pull the Hox genes one after the other, driving them to a transcription factory domain where they are transcribed. The existing experimental data support this BM description. Symmetry is a physical–mathematical property of matter that was explored in depth by Noether who formulated a ground-breaking theory (NT) that applies to all sizes of matter. NT may be applied to biology in order to explain the origin of HGC in animals developing not only along the A/P axis, but also to animals with circular symmetry.
Collapse
|
9
|
Durston AJ. A Tribute to Lewis Wolpert and His Ideas on the 50th Anniversary of the Publication of His Paper 'Positional Information and the Spatial Pattern of Differentiation'. Evidence for a Timing Mechanism for Setting Up the Vertebrate Anterior-Posterior (A-P) Axis. Int J Mol Sci 2020; 21:E2552. [PMID: 32272563 PMCID: PMC7177403 DOI: 10.3390/ijms21072552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
This article is a tribute to Lewis Wolpert and his ideas on the occasion of the recent 50th anniversary of the publication of his article 'Positional Information and the Spatial Pattern of Differentiation'. This tribute relates to another one of his ideas: his early 'Progress Zone' timing model for limb development. Recent evidence is reviewed showing a mechanism sharing features with this model patterning the main body axis in early vertebrate development. This tribute celebrates the golden era of Developmental Biology.
Collapse
Affiliation(s)
- Antony J Durston
- Institute of Biology, University of Leiden, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
10
|
Durston AJ. Some Questions and Answers About the Role of Hox Temporal Collinearity in Vertebrate Axial Patterning. Front Cell Dev Biol 2019; 7:257. [PMID: 31850338 PMCID: PMC6895010 DOI: 10.3389/fcell.2019.00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023] Open
Abstract
The vertebrate anterior-posterior (A-P = craniocaudal) axis is evidently made by a timing mechanism. Evidence has accumulated that tentatively identifies the A-P timer as being or involving Hox temporal collinearity (TC). Here, I focus on the two current competing models based on this premise. Common features and points of dissent are examined and a common model is distilled from what remains. This is an attempt to make sense of the literature.
Collapse
|
11
|
Mitros T, Lyons JB, Session AM, Jenkins J, Shu S, Kwon T, Lane M, Ng C, Grammer TC, Khokha MK, Grimwood J, Schmutz J, Harland RM, Rokhsar DS. A chromosome-scale genome assembly and dense genetic map for Xenopus tropicalis. Dev Biol 2019; 452:8-20. [PMID: 30980799 DOI: 10.1016/j.ydbio.2019.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/12/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
Abstract
The Western clawed frog Xenopus tropicalis is a diploid model system for both frog genetics and developmental biology, complementary to the paleotetraploid X. laevis. Here we report a chromosome-scale assembly of the X. tropicalis genome, improving the previously published draft genome assembly through the use of new assembly algorithms, additional sequence data, and the addition of a dense genetic map. The improved genome enables the mapping of specific traits (e.g., the sex locus or Mendelian mutants) and the characterization of chromosome-scale synteny with other tetrapods. We also report an improved annotation of the genome that integrates deep transcriptome sequence from diverse tissues and stages. The exon-intron structures of these genes are highly conserved relative to both X. laevis and human, as are chromosomal linkages ("synteny") and local gene order. A network analysis of developmental gene expression will aid future studies.
Collapse
Affiliation(s)
- Therese Mitros
- University of California, Berkeley, Department of Molecular and Cell Biology, Life Sciences Addition, Berkeley, CA 94720-3200, USA.
| | - Jessica B Lyons
- University of California, Berkeley, Department of Molecular and Cell Biology, Life Sciences Addition, Berkeley, CA 94720-3200, USA.
| | - Adam M Session
- Joint Genome Institute, 2800 Mitchell Dr # 100, Walnut Creek, CA 94598, USA.
| | - Jerry Jenkins
- Joint Genome Institute, 2800 Mitchell Dr # 100, Walnut Creek, CA 94598, USA; HudsonAlpha Institute of Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA.
| | - Shengquiang Shu
- Joint Genome Institute, 2800 Mitchell Dr # 100, Walnut Creek, CA 94598, USA.
| | - Taejoon Kwon
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Maura Lane
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, FMP 410, 333 Cedar St./LCI 305, New Haven, CT 06520, USA.
| | - Connie Ng
- University of California, Berkeley, Department of Molecular and Cell Biology, Life Sciences Addition, Berkeley, CA 94720-3200, USA.
| | - Timothy C Grammer
- University of California, Berkeley, Department of Molecular and Cell Biology, Life Sciences Addition, Berkeley, CA 94720-3200, USA.
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, FMP 410, 333 Cedar St./LCI 305, New Haven, CT 06520, USA.
| | - Jane Grimwood
- Joint Genome Institute, 2800 Mitchell Dr # 100, Walnut Creek, CA 94598, USA; HudsonAlpha Institute of Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA.
| | - Jeremy Schmutz
- Joint Genome Institute, 2800 Mitchell Dr # 100, Walnut Creek, CA 94598, USA; HudsonAlpha Institute of Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA.
| | - Richard M Harland
- University of California, Berkeley, Department of Molecular and Cell Biology, Life Sciences Addition, Berkeley, CA 94720-3200, USA.
| | - Daniel S Rokhsar
- University of California, Berkeley, Department of Molecular and Cell Biology, Life Sciences Addition, Berkeley, CA 94720-3200, USA; Joint Genome Institute, 2800 Mitchell Dr # 100, Walnut Creek, CA 94598, USA; Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 9040495, Japan.
| |
Collapse
|
12
|
Matsunami M, Suzuki M, Haramoto Y, Fukui A, Inoue T, Yamaguchi K, Uchiyama I, Mori K, Tashiro K, Ito Y, Takeuchi T, Suzuki KIT, Agata K, Shigenobu S, Hayashi T. A comprehensive reference transcriptome resource for the Iberian ribbed newt Pleurodeles waltl, an emerging model for developmental and regeneration biology. DNA Res 2019; 26:217-229. [PMID: 31006799 PMCID: PMC6589553 DOI: 10.1093/dnares/dsz003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
Urodele newts have unique biological properties, notably including prominent regeneration ability. The Iberian ribbed newt, Pleurodeles waltl, is a promising model amphibian distinguished by ease of breeding and efficient transgenic and genome editing methods. However, limited genetic information is available for P. waltl. We conducted an intensive transcriptome analysis of P. waltl using RNA-sequencing to build and annotate gene models. We generated 1.2 billion Illumina reads from a wide variety of samples across 12 different tissues/organs, unfertilized egg, and embryos at eight different developmental stages. These reads were assembled into 1,395,387 contigs, from which 202,788 non-redundant ORF models were constructed. The set is expected to cover a large fraction of P. waltl protein-coding genes, as confirmed by BUSCO analysis, where 98% of universal single-copy orthologs were identified. Ortholog analyses revealed the gene repertoire evolution of urodele amphibians. Using the gene set as a reference, gene network analysis identified regeneration-, developmental-stage-, and tissue-specific co-expressed gene modules. Our transcriptome resource is expected to enhance future research employing this emerging model animal for regeneration research as well as for investigations in other areas including developmental biology, stem cell biology, and cancer research. These data are available via our portal website, iNewt (http://www.nibb.ac.jp/imori/main/).
Collapse
Affiliation(s)
- Masatoshi Matsunami
- Department of Advanced Genomics and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Okinawa, Japan
| | - Miyuki Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Yoshikazu Haramoto
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Akimasa Fukui
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-Ku, Tokyo, Japan
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-Ku, Tokyo, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Ikuo Uchiyama
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kazuki Mori
- Computational Bio Big-Data Open Innovation Lab. (CBBD-OIL), Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Shinjuku-Ku, Tokyo, Japan
| | - Kosuke Tashiro
- Laboratory of Molecular Gene Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takashi Takeuchi
- Department of Biomedical Sciences, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Ken-ichi T Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan
- Center for the Development of New Model Organisms, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyokazu Agata
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-Ku, Tokyo, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Toshinori Hayashi
- Department of Biomedical Sciences, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
13
|
Kondo M, Matsuo M, Igarashi K, Haramoto Y, Yamamoto T, Yasuoka Y, Taira M. De novo transcription of multiple Hox cluster genes takes place simultaneously in early Xenopus tropicalis embryos. Biol Open 2019; 8:bio.038422. [PMID: 30651235 PMCID: PMC6451350 DOI: 10.1242/bio.038422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
hox genes are found as clusters in the genome in most bilaterians. The order of genes in the cluster is supposed to be correlated with the site of expression along the anterior-posterior body axis and the timing of expression during development, and these correlations are called spatial and temporal collinearity, respectively. Here we studied the expression dynamics of all hox genes of the diploid species Xenopus tropicalis in four Hox clusters (A–D) by analyzing high-temporal-resolution RNA-seq databases and the results showed that temporal collinearity is not supported, which is consistent with our previous data from allotetraploid Xenopuslaevis. Because the temporal collinearity hypothesis implicitly assumes the collinear order of gene activation, not mRNA accumulation, we determined for the first time the timing of when new transcripts of hox genes are produced, by detecting pre-spliced RNA in whole embryos with reverse transcription and quantitative PCR (RT-qPCR) for all hoxa genes as well as several selected hoxb, hoxc and hoxd genes. Our analyses showed that, coinciding with the RNA-seq results, hoxa genes started to be transcribed in a non-sequential order, and found that multiple genes start expression almost simultaneously or more posterior genes could be expressed earlier than anterior ones. This tendency was also found in hoxb and hoxc genes. These results suggest that temporal collinearity of hox genes is not held during early development of Xenopus. Summary: qPCR analysis for de novo transcription of hox genes suggest that temporal collinearity is not held for all hox genes during early development of Xenopus tropicalis.
Collapse
Affiliation(s)
- Mariko Kondo
- Misaki Marine Biological Station, Graduate School of Science and Center for Marine Biology, The University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Megumi Matsuo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kento Igarashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshikazu Haramoto
- Biotechnology Research Institute for Drug Discovery (BRD), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Takayoshi Yamamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Abstract
Hox temporal collinearity (TC) is a mysterious feature of embryogenesis. This article is opportune because of a recent challenge to TC’s existence This challenge is examined and the evidence that TC does exist is presented. Its function is discussed. Temporal collinearity is thought to be important because it lays the basis for Hox spatial collinearity and the vertebrate A-P axial pattern. The time-space translation mechanism whereby this occurs is examined.
Collapse
Affiliation(s)
- A J Durston
- a Institute of Biology , University of Leiden, Sylvius Laboratory , Leiden , Netherlands
| |
Collapse
|
15
|
Feltes BC. Architects meets Repairers: The interplay between homeobox genes and DNA repair. DNA Repair (Amst) 2018; 73:34-48. [PMID: 30448208 DOI: 10.1016/j.dnarep.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Homeobox genes are widely considered the major protagonists of embryonic development and tissue formation. For the past decades, it was established that the deregulation of these genes is intimately related to developmental abnormalities and a broad range of diseases in adults. Since the proper regulation and expression of homeobox genes are necessary for a successful developmental program and tissue function, their relation to DNA repair mechanisms become a necessary discussion. However, important as it is, studies focused on the interplay between homeobox genes and DNA repair are scarce, and there is no critical discussion on the subject. Hence, in this work, I aim to provide the first review of the current knowledge of the interplay between homeobox genes and DNA repair mechanisms, and offer future perspectives on this, yet, young ground for new researches. Critical discussion is conducted, together with a careful assessment of each reviewed topic.
Collapse
Affiliation(s)
- Bruno César Feltes
- Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
16
|
Deng Y, He R, Zhang R, Gan B, Zhang Y, Chen G, Hu X. The expression of HOXA13 in lung adenocarcinoma and its clinical significance: A study based on The Cancer Genome Atlas, Oncomine and reverse transcription-quantitative polymerase chain reaction. Oncol Lett 2018; 15:8556-8572. [PMID: 29805592 PMCID: PMC5950532 DOI: 10.3892/ol.2018.8381] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/02/2018] [Indexed: 02/06/2023] Open
Abstract
Previous studies have investigated the association between HOXA13 and non-small cell lung cancer. However, the role of HOXA13 expression in the occurrence and progression of lung adenocarcinoma (LUAD) has not yet been investigated. In the present study, HOXA13-related data mining of The Cancer Genome Atlas (TCGA), polymerase chain reaction (PCR) data from our cases and the case information in Oncomine was conducted for validation. The expression data of HOXA13 in lung cancer cell lines were also collected from the Cancer Cell Line Encyclopedia (CCLE) database for further verification. A comprehensive meta-analysis of the expression of HOXA13 was also performed, integrating the data of TCGA, in-house PCR and Oncomine. Genes that were co-expressed with HOXA13 were subsequently identified through cBioPortal and Multi Experiment Matrix (MEM), and the potential role and mechanism of HOXA13 in LUAD was investigated. The expression value of HOXA13 in the LUAD group, which comprised 237 cases, was 3.74±2.694, significantly higher than its expression value in the non-cancerous group (0.92±0.608, P<0.001). The pooled SMD for HOXA13 was 0.346 (95% CI, 0.052–0.640; P=0.068; I2=51.3%; P=0.021), The meta-analysis of diagnostic tests revealed that the area under the summary receiver operating characteristic curve (SROC) was 0.78 (95% CI, 0.75–0.82). The results demonstrated that HOXA13 is highly expressed in LUAD. In addition to the studies on HOXA13 expression in tissues, the expression data of HOXA13 in lung cancer cell lines were also collected from the CCLE database for further verification of these conclusions. Genes that were co-expressed with HOXA13 were identified for pathway analysis. The most enriched Gene Ontology terms in the genes co-expressed with HOXA13 were positive regulation of transcription from RNA polymerase II promoter, signal transduction and positive regulation of GTPase activity in biological process; cytoplasm, integral component of membrane and plasma membrane in cellular component; and significantly involved in protein binding, transcription factor activity, sequence-specific DNA binding and sequence-specific DNA binding in molecular function. Kyoto Encyclopedia of Genes and Genomes analysis revealed that these target genes were clearly involved in Pathways in cancer, Proteoglycans in cancer and cAMP signaling pathway. The hub genes obtained from the four protein-protein interaction networks were associated with HOXA13. The results of the bioinformatics research in the present study revealed that HOXA13 may influence the expression of these hub genes in such a way as to promote the occurrence and development of LUAD. In conclusion, the expression of HOXA13 in patients with LUAD and its potential clinical value were analyzed comprehensively in the present study using data from a variety of sources. Through bioinformatics analysis, evidence that HOXA13 may promote the occurrence and development of LUAD was obtained.
Collapse
Affiliation(s)
- Yun Deng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rongquan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Binliang Gan
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaohua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|