1
|
Wilhelm D, Perea-Gomez A, Newton A, Chaboissier MC. Gonadal sex determination in vertebrates: rethinking established mechanisms. Development 2025; 152:dev204592. [PMID: 40162719 DOI: 10.1242/dev.204592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sex determination and differentiation are fundamental processes that are not only essential for fertility but also influence the development of many other organs, and hence, are important for species diversity and survival. In mammals, sex is determined by the inheritance of an X or a Y chromosome from the father. The Y chromosome harbours the testis-determining gene SRY, and it has long been thought that its absence is sufficient for ovarian development. Consequently, the ovarian pathway has been treated as a default pathway, in the sense that ovaries do not have or need a female-determining factor. Recently, a female-determining factor has been identified in mouse as the master regulator of ovarian development. Interestingly, this scenario was predicted as early as 1983. In this Review, we discuss the model predicted in 1983, how the mechanisms and genes currently known to be important for sex determination and differentiation in mammals have changed or supported this model, and finally, reflect on what these findings might mean for sex determination in other vertebrates.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Aitana Perea-Gomez
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Axel Newton
- TIGRR Lab, The School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | | |
Collapse
|
2
|
Liao L, Yao Z, Kong J, Zhang X, Li H, Chen W, Xie Q. Transcriptomic analysis reveals the dynamic changes of transcription factors during early development of chicken embryo. BMC Genomics 2022; 23:825. [PMID: 36513979 PMCID: PMC9746114 DOI: 10.1186/s12864-022-09054-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The transition from fertilized egg to embryo in chicken requires activation of hundreds of genes that were mostly inactivated before fertilization, which is accompanied with various biological processes. Undoubtedly, transcription factors (TFs) play important roles in regulating the changes in gene expression pattern observed at early development. However, the contribution of TFs during early embryo development of chicken still remains largely unknown that need to be investigated. Therefore, an understanding of the development of vertebrates would be greatly facilitated by study of the dynamic changes in transcription factors during early chicken embryo. RESULTS In the current study, we selected five early developmental stages in White Leghorn chicken, gallus gallus, for transcriptome analysis, cover 17,478 genes with about 807 million clean reads of RNA-sequencing. We have compared global gene expression patterns of consecutive stages and noted the differences. Comparative analysis of differentially expressed TFs (FDR < 0.05) profiles between neighboring developmental timepoints revealed significantly enriched biological categories associated with differentiation, development and morphogenesis. We also found that Zf-C2H2, Homeobox and bHLH were three dominant transcription factor families that appeared in early embryogenesis. More importantly, a TFs co-expression network was constructed and 16 critical TFs were identified. CONCLUSION Our findings provide a comprehensive regulatory framework of TFs in chicken early embryo, revealing new insights into alterations of chicken embryonic TF expression and broadening better understanding of TF function in chicken embryogenesis.
Collapse
Affiliation(s)
- Liqin Liao
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China ,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 P. R. China
| | - Ziqi Yao
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China
| | - Jie Kong
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China
| | - Xinheng Zhang
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China
| | - Hongxin Li
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 P. R. China
| | - Weiguo Chen
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China
| | - Qingmei Xie
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China ,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 P. R. China
| |
Collapse
|
3
|
Transgenic Mouse Models to Study the Development and Maintenance of the Adrenal Cortex. Int J Mol Sci 2022; 23:ijms232214388. [PMID: 36430866 PMCID: PMC9693478 DOI: 10.3390/ijms232214388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The cortex of the adrenal gland is organized into concentric zones that produce distinct steroid hormones essential for body homeostasis in mammals. Mechanisms leading to the development, zonation and maintenance of the adrenal cortex are complex and have been studied since the 1800s. However, the advent of genetic manipulation and transgenic mouse models over the past 30 years has revolutionized our understanding of these mechanisms. This review lists and details the distinct Cre recombinase mouse strains available to study the adrenal cortex, and the remarkable progress total and conditional knockout mouse models have enabled us to make in our understanding of the molecular mechanisms regulating the development and maintenance of the adrenal cortex.
Collapse
|
4
|
McKey J, Anbarci DN, Bunce C, Ontiveros AE, Behringer RR, Capel B. Integration of mouse ovary morphogenesis with developmental dynamics of the oviduct, ovarian ligaments, and rete ovarii. eLife 2022; 11:e81088. [PMID: 36165446 PMCID: PMC9621696 DOI: 10.7554/elife.81088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/26/2022] [Indexed: 01/29/2023] Open
Abstract
Morphogenetic events during the development of the fetal ovary are crucial to the establishment of female fertility. However, the effects of structural rearrangements of the ovary and surrounding reproductive tissues on ovary morphogenesis remain largely uncharacterized. Using tissue clearing and lightsheet microscopy, we found that ovary folding correlated with regionalization into cortex and medulla. Relocation of the oviduct to the ventral aspect of the ovary led to ovary encapsulation, and mutual attachment of the ovary and oviduct to the cranial suspensory ligament likely triggered ovary folding. During this process, the rete ovarii (RO) elaborated into a convoluted tubular structure extending from the ovary into the ovarian capsule. Using genetic mouse models in which the oviduct and RO are perturbed, we found the oviduct is required for ovary encapsulation. This study reveals novel relationships among the ovary and surrounding tissues and paves the way for functional investigation of the relationship between architecture and differentiation of the mammalian ovary.
Collapse
Affiliation(s)
- Jennifer McKey
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | - Dilara N Anbarci
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | - Corey Bunce
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | - Alejandra E Ontiveros
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
5
|
Oikonomakos I, Weerasinghe Arachchige LC, Schedl A. Developmental mechanisms of adrenal cortex formation and their links with adult progenitor populations. Mol Cell Endocrinol 2021; 524:111172. [PMID: 33484742 DOI: 10.1016/j.mce.2021.111172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
The adrenal cortex is the main steroid producing organ of the human body. Studies on adrenal tissue renewal have been neglected for many years, but recent intensified research has seen tremendous progress in our understanding of the formation and homeostasis of this organ. However, cell turnover of the adrenal cortex appears to be complex and several cell populations have been identified that can differentiate into steroidogenic cells and contribute to adrenal cortex renewal. The purpose of this review is to provide an overview of how the adrenal cortex develops and how stem cell populations relate to its developmental progenitors. Finally, we will summarize present and future approaches to harvest the potential of progenitor/stem cells for future cell replacement therapies.
Collapse
Affiliation(s)
- Ioannis Oikonomakos
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108, Nice, France.
| | | | - Andreas Schedl
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108, Nice, France.
| |
Collapse
|