1
|
Cwetsch AW, Ziogas I, Narducci R, Savardi A, Bolla M, Pinto B, Perlini LE, Bassani S, Passafaro M, Cancedda L. A rat model of a focal mosaic expression of PCDH19 replicates human brain developmental abnormalities and behaviors. Brain Commun 2022; 4:fcac091. [PMID: 35528232 PMCID: PMC9070467 DOI: 10.1093/braincomms/fcac091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022] Open
Abstract
Protocadherin 19 gene-related epilepsy or protocadherin 19 clustering epilepsy is an infantile-onset epilepsy syndrome characterized by psychiatric (including autism-related), sensory, and cognitive impairment of varying degrees. Protocadherin 19 clustering epilepsy is caused by X-linked protocadherin 19 protein loss of function. Due to random X-chromosome inactivation, protocadherin 19 clustering epilepsy-affected females present a mosaic population of healthy and protocadherin 19-mutant cells. Unfortunately, to date, no current mouse model can fully recapitulate both the brain histological and behavioural deficits present in people with protocadherin 19 clustering epilepsy. Thus, the search for a proper understanding of the disease and possible future treatment is hampered. By inducing a focal mosaicism of protocadherin 19 expression using in utero electroporation in rats, we found here that protocadherin 19 signalling in specific brain areas is implicated in neuronal migration, heat-induced epileptic seizures, core/comorbid behaviours related to autism and cognitive function.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
- Instituto de Biotecnologia y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Ilias Ziogas
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Roberto Narducci
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Dulbecco Telethon Institute, Italy
| | - Maria Bolla
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Laura E Perlini
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | | | | | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Dulbecco Telethon Institute, Italy
| |
Collapse
|
2
|
Nagarajan L, Ghosh S, Dyke J, Lee S, Silberstein J, Azmanov D, Richard W. Epilepsy surgery in PCDH 19 related developmental and epileptic encephalopathy: A case report. Epilepsy Behav Rep 2022; 19:100560. [PMID: 35856042 PMCID: PMC9287778 DOI: 10.1016/j.ebr.2022.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 12/03/2022] Open
Abstract
PCDH19 pathogenic variants may be associated with DEE in females. Epilepsy Surgery may be an option for PCDH19 related drug-resistant epilepsy.
We report a female child with PCDH19 related developmental and epileptic encephalopathy with drug-resistant seizures, cognitive and language impairment, autism spectrum disorder and sleep dysfunction. Her seizures, which started at 10 months of age, were resistant to multiple anti-seizure medications. Developmental stagnation followed by regression occurred after the onset of recurrent seizures. Her ictal EEGS suggested left temporal lobe origin for her recorded seizures. MRI upon expert re-review showed a subtle abnormality in the left temporal lobe. In view of the severe nature and frequency of her seizures, a left temporal lobectomy was undertaken at the age of 2 years and 3 months. Though her seizure outcome was Engel class 3, her seizure frequency and severity were significantly reduced. She has been seizure-free for 10 months at her last outpatient assessment when she was 4 years and 8 months of age (2 years and 5 months after epilepsy surgery). However she recently had an admission for COVID19 infection, with a breakthrough cluster of seizures. Her developmental trajectory changed, though she is making good progress with her cognitive and language skills.
Collapse
Affiliation(s)
- Lakshmi Nagarajan
- Children’s Neuroscience Service, Dept of Neurology, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- School of Medicine, University of Western Australia, WA 6009, Australia
- Corresponding author at: Children’s Neuroscience Service, Dept of Neurology, Perth Children’s Hospital, Nedlands, WA 6009, Australia.
| | - Soumya Ghosh
- Children’s Neuroscience Service, Dept of Neurology, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia. WA 6009, Australia
| | - Jason Dyke
- School of Medicine, University of Western Australia, WA 6009, Australia
- PathWest Neuropathology, Royal Perth Hospital, Victoria Street, Perth, WA 6000, Australia
| | - Sharon Lee
- School of Medicine, University of Western Australia, WA 6009, Australia
- Dept of Neurosurgery, Perth Children’s Hospital, Nedlands, WA 6009, Australia
| | - Jonathan Silberstein
- Children’s Neuroscience Service, Dept of Neurology, Perth Children’s Hospital, Nedlands, WA 6009, Australia
| | - Dimitar Azmanov
- Dept of Neurosurgery, Perth Children’s Hospital, Nedlands, WA 6009, Australia
| | - Warne Richard
- WA State Wide Neurosurgery Service, WA 6009, Australia
| |
Collapse
|
3
|
Braun CM, Elie-Fortier J. Epilepsy and autism: How does age at seizure onset factor in? JOURNAL OF EPILEPTOLOGY 2021. [DOI: 10.21307/jepil-2021-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
4
|
Abstract
Epilepsy is characterized by specific alterations in network organization. The main parameters at the basis of epileptogenic network formation are alterations of cortical thickness, development of pathologic hubs, modification of hub distribution, and white matter alterations. The effect is a reinforcement of brain connectivity in both the epileptogenic zone and the propagation zone. Moreover, the epileptogenic network is characterized by some specific neurophysiologic biomarkers that evidence the tendency of the network itself to shift from an interictal state to an ictal one. The recognition of these features is crucial in planning epilepsy surgery.
Collapse
|
5
|
Vitale G, Pichiecchio A, Ormitti F, Tonduti D, Asaro A, Farina L, Piccolo B, Percesepe A, Bastianello S, Orcesi S, Battaglia D, Cereda C, Martelli P, Mine M, Pinelli L, Tartaglione T, Ghi T, Parrini E, Zuffardi O. Cortical malformations and COL4A1 mutation: Three new cases. Eur J Paediatr Neurol 2019; 23:410-417. [PMID: 30837194 DOI: 10.1016/j.ejpn.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 01/30/2023]
Abstract
AIM The COL4A1 gene (13q34) encodes the α1 chain of type IV collagen, a crucial component of the basal membrane. COL4A1 mutations have been identified as a cause of a multisystem disease. Brain MRI in COL4A1-mutated patients typically shows vascular abnormalities and white matter lesions. Cortical malformations (specifically schizencephaly) have also recently been described in these patients, suggesting that these, too, could be part of the phenotypic spectrum of COL4A1 mutations. The aim of our work was to retrospectively evaluate COL4A1-mutated subjects diagnosed at our centers in order to assess the frequency and define the type of cortical malformations encountered in these individuals. METHOD We retrospectively reviewed MRI data of 18 carriers of COL4A1 mutations diagnosed in our centers between 2010 and 2016. RESULTS We identified polymicrogyria in two patients, and schizencephaly in the mother of a further patient. INTERPRETATION Our findings confirm that cortical malformations should be considered to fall within the phenotypic spectrum of COL4A1 mutations and show that not only schizencephaly but also polymicrogyria can also be found in mutated individuals. Although further studies are needed to clarify the underlying pathogenetic mechanism, independently of this, the timing of the brain damage could be the crucial factor determining the type of lesion.
Collapse
Affiliation(s)
- G Vitale
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - A Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy.
| | - F Ormitti
- Neuroradiology Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - D Tonduti
- Child Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy
| | - A Asaro
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - L Farina
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - B Piccolo
- Child Neuropsychiatry Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - A Percesepe
- Medical Genetics, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - S Bastianello
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - S Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Child and Adolescence Neurology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|