1
|
Liang S, Liu M, Liu Z, Zhong X, Qin Y, Liang T, Wang X, Tang Z, Li Q, Huang H. Global longitudinal strain assessment in contrast-enhanced echocardiography in breast cancer patients: a feasibility study. Cardiovasc Ultrasound 2023; 21:7. [PMID: 37081550 PMCID: PMC10116775 DOI: 10.1186/s12947-023-00304-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/02/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Left ventricular global longitudinal strain (GLS) obtained from two-dimensional speckle-tracking echocardiography (2D-STE) can reflect cancer therapy-related cardiac dysfunction in breast cancer (BC) patients, however, the accuracy and reproducibility of 2D-STE are restricted due to poor image quality. METHODS Between January 2019 and October 2021, 160 consecutive BC patients aged ≥ 18 years were recruited. The 160 BC patients (mean age: 48.41 ± 9.93 years, 100% women) underwent both 2D-STE and Contrast-enhanced echocardiography (CEcho), 125 of whom were included in the measurement of GLS. The intraclass correlation coefficient (ICC) was used to determine the intra- and inter-observer reproducibility of 2D-STE and CEcho-STE. Correlation (r) was calculated using Pearson correlation. Statistical significance was set at P < 0.05. RESULTS Among 160 BC patients, more segments were recognized by CEcho-STE than by 2D-STE (2,771, 99.53% vs. 2,440, 84.72%). The left ventricular ejection fraction (LVEF) obtained by 2D was lower than CEcho (61.75 ± 6.59% vs. 64.14 ± 5.97%, P < 0.0001). The GLS obtained by 2D-STE was lower than CEcho-STE (-21.74 ± 2.77% vs. -26.79 ± 4.30%, P = 0.001). The ICC of the intraobserver and interobserver agreements in the CEcho-STE group was lower than that in the 2D-STE group. GLS measurements were in good agreement between the 2D-STE and CEcho-STE groups (r = 0.773). CONCLUSIONS CEcho can overcome some imaging limitations and recognize more segments than 2D, which may provide an LVEF and GLS closer to the true value. Based on AutoStrain, CEcho-STE may serve as a complementary method for those with poor image quality.
Collapse
Affiliation(s)
- Shichu Liang
- Department of Cardiology, West China Hospital, Sichuan University, No.37 GuoXue Alley, Chengdu, 610041, China
| | - Mei Liu
- Department of Cardiology, West China Hospital, Sichuan University, No.37 GuoXue Alley, Chengdu, 610041, China
| | - Zhiyue Liu
- Department of Cardiology, West China Hospital, Sichuan University, No.37 GuoXue Alley, Chengdu, 610041, China
| | - Xiaorong Zhong
- Department of Head and Neck Oncology Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yupei Qin
- Department of Cardiology, West China Hospital, Sichuan University, No.37 GuoXue Alley, Chengdu, 610041, China
| | - Ting Liang
- Department of Cardiology, West China Hospital, Sichuan University, No.37 GuoXue Alley, Chengdu, 610041, China
| | - Xi Wang
- Department of Cardiology, West China Hospital, Sichuan University, No.37 GuoXue Alley, Chengdu, 610041, China
| | - Zhuoqin Tang
- Department of Cardiology, West China Hospital, Sichuan University, No.37 GuoXue Alley, Chengdu, 610041, China
| | - Qian Li
- Department of Cardiology, West China Hospital, Sichuan University, No.37 GuoXue Alley, Chengdu, 610041, China
| | - He Huang
- Department of Cardiology, West China Hospital, Sichuan University, No.37 GuoXue Alley, Chengdu, 610041, China.
| |
Collapse
|
2
|
Therapeutic response monitoring after targeted therapy in an orthotopic rat model of hepatocellular carcinoma using contrast-enhanced ultrasound: Focusing on inter-scanner, and inter-operator reproducibility. PLoS One 2020; 15:e0244304. [PMID: 33362203 PMCID: PMC7757904 DOI: 10.1371/journal.pone.0244304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/03/2020] [Indexed: 11/30/2022] Open
Abstract
Purpose To assess therapeutic response monitoring after targeted therapy in an orthotopic rat model of hepatocellular carcinoma (HCC) using CEUS with focusing on inter-scanner and inter-operator reproducibility. Materials and methods For reproducibility, CEUS was performed using two different US scanners by two operators in sixteen rat models of HCC. Using perfusion analysis software (VueBox ®), eleven parameters were collected, and intra-class correlation coefficient (ICC) was used to analyze reproducibility. Then seventeen rat models of HCC were divided into treatment group (n = 8, 30 mg/kg/day sorafenib for five days) and control group (n = 9). CEUS was performed at baseline and 14 days after first treatment, and changes of perfusion parameters were analyzed. Results In treatment group, CEUS perfusion parameters showed a significant change. The peak enhancement (PE, 2.50 x103±1.68 x103 vs 5.55x102±4.65x102, p = 0.010) and wash-in and wash out AUC (WiWoAUC, 1.07x105±6.48 x104 vs 2.65x104±2.25x104, p = 0.009) had significantly decreased two weeks after treatment. On the contrary, control group did not show a significant change, including PE (1.15 x103±7.53x102 vs 9.43x102± 7.81 x102, p = 0.632) and WiWoAUC (5.09 x104±3.25x104 vs 5.92 x104±3.20x104, p = 0.646). For reproducibility, the various degrees of inter-scanner reproducibility were from poor to good (ICC: <0.01–0.63). However, inter-operator reproducibility of important perfusion parameters, including WiAUC, WoAUC, and WiWoAUC, ranged from fair to excellent (ICC: 0.59–0.93) in a different scanner. Conclusion Our results suggest that CEUS is useful for assessment of the treatment response after targeted therapy and with fair to excellent inter-operator reproducibility.
Collapse
|
3
|
Zhang YL, Wang XC, Li XD, Hu C, Pei LP, Yu W, Ma Y, Jiang S. Rupture of Aortic Sinus Aneurysms Diagnosed by Left Ventricular Opacification. Int Heart J 2020; 61:186-190. [PMID: 31875619 DOI: 10.1536/ihj.19-271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rupture of aortic sinus aneurysms is a rare cardiac malformation that is commonly observed in the right coronary sinus but is rarely observed in the noncoronary sinus. Here, we report a case of aneurysm of the aortic sinus that ruptured into the left ventricular outflow tract and was diagnosed with left ventricular opacification. Left heart echocardiography can clearly demonstrate the structure of the heart and is one of the important diagnostic methods for diagnosing ruptured aortic sinus aneurysms. This observes the perfusion sequence of blood flow to clearly reveal the source, direction, and location of the ruptured aortic sinus aneurysm.
Collapse
Affiliation(s)
- Yan-Li Zhang
- Department of Echocardiography, The First Hospital of Jilin University
| | - Xiao-Cong Wang
- Department of Echocardiography, The First Hospital of Jilin University
| | - Xiao-Dong Li
- Department of Echocardiography, The First Hospital of Jilin University
| | - Cong Hu
- Prenatal Diagnostic Center, The First Hospital of Jilin University
| | - Li-Ping Pei
- Department of Echocardiography, The First Hospital of Jilin University
| | - Wei Yu
- Department of Echocardiography, The First Hospital of Jilin University
| | - Yan Ma
- Department of Echocardiography, The First Hospital of Jilin University
| | - Shu Jiang
- Department of Echocardiography, The First Hospital of Jilin University
| |
Collapse
|
4
|
Johnson C, Kuyt K, Oxborough D, Stout M. Practical tips and tricks in measuring strain, strain rate and twist for the left and right ventricles. Echo Res Pract 2019; 6:R87-R98. [PMID: 31289687 PMCID: PMC6612062 DOI: 10.1530/erp-19-0020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023] Open
Abstract
Strain imaging provides an accessible, feasible and non-invasive technique to assess cardiac mechanics. Speckle tracking echocardiography (STE) is the primary modality with the utility for detection of subclinical ventricular dysfunction. Investigation and adoption of this technique has increased significantly in both the research and clinical environment. It is therefore important to provide information to guide the sonographer on the production of valid and reproducible data. The focus of this review is to (1) describe cardiac physiology and mechanics relevant to strain imaging, (2) discuss the concepts of strain imaging and STE and (3) provide a practical guide for the investigation and interpretation of cardiac mechanics using STE.
Collapse
Affiliation(s)
- Christopher Johnson
- Research institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Katherine Kuyt
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - David Oxborough
- Research institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Martin Stout
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
5
|
Platts DG, Shiino K, Chan J, Burstow DJ, Scalia GM, Fraser JF. Echocardiographic assessment of myocardial function and mechanics during veno-venous extracorporeal membrane oxygenation. Echo Res Pract 2019; 6:25-35. [PMID: 30959479 PMCID: PMC6499935 DOI: 10.1530/erp-18-0071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/03/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Transthoracic echocardiography (TTE) plays a fundamental role in the management of patients supported with extra-corporeal membrane oxygenation (ECMO). In light of fluctuating clinical states, serial monitoring of cardiac function is required. Formal quantification of ventricular parameters and myocardial mechanics offer benefit over qualitative assessment. The aim of this research was to compare unenhanced (UE) versus contrast-enhanced (CE) quantification of myocardial function and mechanics during ECMO in a validated ovine model. METHODS Twenty-four sheep were commenced on peripheral veno-venous ECMO. Acute smoke-induced lung injury was induced in 21 sheep (3 controls). CE-TTE with Definity using Cadence Pulse Sequencing was performed. Two readers performed image analysis with TomTec Arena. End diastolic area (EDA, cm2), end systolic area (ESA, cm2), fractional area change (FAC, %), endocardial global circumferential strain (EGCS, %), myocardial global circumferential strain (MGCS, %), endocardial rotation (ER, degrees) and global radial strain (GRD, %) were evaluated for UE-TTE and CE-TTE. RESULTS Full data sets are available in 22 sheep (92%). Mean CE EDA and ESA were significantly larger than in unenhanced images. Mean FAC was almost identical between the two techniques. There was no significant difference between UE and CE EGCS, MGCS and ER. There was significant difference in GRS between imaging techniques. Unenhanced inter-observer variability was from 0.48-0.70 but significantly improved to 0.71-0.89 for contrast imaging in all echocardiographic parameters. CONCLUSION Semi-automated methods of myocardial function and mechanics using CE-TTE during ECMO was feasible and similar to UE-TTE for all parameters except ventricular areas and global radial strain. Addition of contrast significantly decreased inter-observer variability of all measurements.
Collapse
Affiliation(s)
- David G Platts
- Department of Echocardiography, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | - Kenji Shiino
- Department of Echocardiography, The Prince Charles Hospital, Brisbane, Queensland, Australia
- School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Fujita Health University, Toyoake, Japan
| | - Jonathan Chan
- Department of Echocardiography, The Prince Charles Hospital, Brisbane, Queensland, Australia
- School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Darryl J Burstow
- Department of Echocardiography, The Prince Charles Hospital, Brisbane, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | - Gregory M Scalia
- Department of Echocardiography, The Prince Charles Hospital, Brisbane, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
- Adult Intensive Care Service, The Prince Charles Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Medvedofsky D, Lang RM, Kruse E, Guile B, Weinert L, Ciszek B, Jacobson Z, Negron J, Volpato V, Prado A, Patel AR, Mor-Avi V. Feasibility of Left Ventricular Global Longitudinal Strain Measurements from Contrast-Enhanced Echocardiographic Images. J Am Soc Echocardiogr 2018; 31:297-303. [DOI: 10.1016/j.echo.2017.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 11/28/2022]
|
7
|
Jiang L, Yao H, Liang ZG. Postoperative Assessment of Myocardial Function and Microcirculation in Patients with Acute Coronary Syndrome by Myocardial Contrast Echocardiography. Med Sci Monit 2017; 23:2324-2332. [PMID: 28514327 PMCID: PMC5443357 DOI: 10.12659/msm.901233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Postoperative myocardial function and microcirculation of acute coronary syndrome (ACS) was assessed by myocardial contrast echocardiography (MCE). MATERIAL AND METHODS Eighty-nine ACS patients treated with percutaneous coronary intervention (PCI) were detected by MCE and two-dimensional ultrasonography before and a month later after PCI respectively. Their myocardial perfusion was evaluated by myocardial contrast score (MSC) and contrast score index (CSI); cross-sectional area of microvessel (A), average myocardial microvascular impairment (β), and myocardial blood flow (MBF) were analyzed by cardiac ultrasound quantitative analysis (CUSQ), and fractional flow reserve (FFR) change was observed. Left ventricular ejection fraction (LVEF), left ventricular end-diastolic dimension (LVEDD), and left ventricular end-systolic dimension (LVESD) were observed; the index of microcirculatory resistance (IMR), FFR, and coronary flow reserve (CFR) were detected to evaluate coronary microcirculation. RESULTS None of the 89 patients experienced no-reflow. Patients with normal myocardial perfusion mostly had normal or slightly decreased ventricular wall motion after PCI. A month after the operation, there was an increase in A, β, MBF, LVEF, E/A, IMR, FFR, and CFR (all P<0.05), while LVEDD, LVESD, diastolic gallop A peak, E/Ea, E/Ea×S, and Tei decreased (all P<0.05). LVEF and IMR were in positive correlations with A. LVEF, IMR, FFR and CFR were positively correlated with b and MBF (both r>0, P<0.05), while E/Ea×Sa and Tei were negatively correlated with b and MBF (r<0, P<0.05). CONCLUSIONS MCE can safely assess post-PCI myocardial function and microcirculation of ASC.
Collapse
Affiliation(s)
- Li Jiang
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Hong Yao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Zhao-Guang Liang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|