1
|
Alkahtani R. Molecular mechanisms underlying some major common risk factors of stroke. Heliyon 2022; 8:e10218. [PMID: 36060992 PMCID: PMC9433609 DOI: 10.1016/j.heliyon.2022.e10218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/10/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Ischemic and hemorrhagic strokes are the most common known cerebrovascular disease which can be induced by modifiable and non-modifiable risk factors. Age and race are the most common non-modifiable risk factors of stroke. However, hypertension, diabetes, obesity, dyslipidemia, physical inactivity, and cardiovascular disorders are major modifiable risk factors. Understanding the molecular mechanism mediating each of these risk factors is expected to contribute significantly to reducing the risk of stroke, preventing neural damage, enhancing rehabilitation, and designing suitable treatments. Abnormalities in the structure of the blood-brain barrier and blood vessels, thrombosis, vasoconstriction, atherosclerosis, reduced cerebral blood flow, neural oxidative stress, inflammation, and apoptosis, impaired synaptic transmission, excitotoxicity, altered expression/activities of many channels and signaling proteins are the most knows mechanisms responsible for stroke induction. However, the molecular role of risk factors in each of these mechanisms is not well understood and requires a lot of search and reading. This review was designed to provide the reader with a single source of information that discusses the current update of the prevalence, pathophysiology, and all possible molecular mechanisms underlying some major risk factors of stroke namely, hypertension, diabetes mellitus, dyslipidemia, and lipid fraction, and physical inactivity. This provides a full resource for understanding the molecular effect of each of these risk factors in stroke.
Collapse
Affiliation(s)
- Reem Alkahtani
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz, University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Zhu Y, Sun Y, Hu J, Pan Z. Insight Into the Mechanism of Exercise Preconditioning in Ischemic Stroke. Front Pharmacol 2022; 13:866360. [PMID: 35350755 PMCID: PMC8957886 DOI: 10.3389/fphar.2022.866360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 01/07/2023] Open
Abstract
Exercise preconditioning has attracted extensive attention to induce endogenous neuroprotection and has become the hotspot in neurotherapy. The training exercise is given multiple times before cerebral ischemia, effectively inducing ischemic tolerance and alleviating secondary brain damage post-stroke. Compared with other preconditioning methods, the main advantages of exercise include easy clinical operation and being readily accepted by patients. However, the specific mechanism behind exercise preconditioning to ameliorate brain injury is complex. It involves multi-pathway and multi-target regulation, including regulation of inflammatory response, oxidative stress, apoptosis inhibition, and neurogenesis promotion. The current review summarizes the recent studies on the mechanism of neuroprotection induced by exercise, providing the theoretical basis of applying exercise therapy to prevent and treat ischemic stroke. In addition, we highlight the various limitations and future challenges of translational medicine from fundamental study to clinical application.
Collapse
Affiliation(s)
- Yuanhan Zhu
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Jichao Hu
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Zhuoer Pan
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
3
|
Hafez S, Eid Z, Alabasi S, Darwiche Y, Channaoui S, Hess DC. Mechanisms of Preconditioning Exercise-Induced Neurovascular Protection in Stroke. J Stroke 2021; 23:312-326. [PMID: 34649377 PMCID: PMC8521252 DOI: 10.5853/jos.2020.03006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability. Tissue plasminogen activator is the only U.S. Food and Drug Administration approved thrombolytic therapy for ischemic stroke patients till date. However, its use is limited due to increased risk of bleeding and narrow therapeutic window. Most of the preclinically tested pharmacological agents failed to be translated to the clinic. This drives the need for alternative therapeutic approaches that not only provide enhanced neuroprotection, but also reduce the risk of stroke. Physical exercise is a sort of preconditioning that provides the body with brief ischemic episodes that can protect the body from subsequent severe ischemic attacks like stroke. Physical exercise is known to improve cardiovascular health. However, its role in providing neuroprotection in stroke is not clear. Clinical observational studies showed a correlation between regular physical exercise and reduced risk and severity of ischemic stroke and better outcomes after stroke. However, the underlying mechanisms through which prestroke exercise can reduce the stroke injury and improve the outcomes are not completely understood. The purpose of this review is to: demonstrate the impact of exercise on stroke outcomes and show the potential role of exercise in stroke prevention and recovery; uncover the underlying mechanisms through which exercise reduces the neurovascular injury and improves stroke outcomes aiming to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sherif Hafez
- Department of Pharmaceutical Sciences, College of Pharmacy Mercer University, Atlanta, GA, USA.,Neurology Department, Augusta University, Augusta, GA, USA
| | - Zeina Eid
- College of Pharmacy Larkin University, Miami, FL, USA
| | - Sara Alabasi
- College of Pharmacy Larkin University, Miami, FL, USA
| | | | | | - David C Hess
- Neurology Department, Augusta University, Augusta, GA, USA
| |
Collapse
|
4
|
Wang YL, Lin CH, Chen CC, Chang CP, Lin KC, Su FC, Chou W. Exercise Preconditioning Attenuates Neurological Injury by Preserving Old and Newly Formed HSP72-Containing Neurons in Focal Brain Ischemia Rats. Int J Med Sci 2019; 16:675-685. [PMID: 31217735 PMCID: PMC6566739 DOI: 10.7150/ijms.32962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Exercise preconditioning (EP+) is a useful and important procedure for the prevention of stroke. We aimed to ascertain whether EP+ protects against ischemic brain injury by preserving heat shock protein (HSP) 72-containing neurons in ischemic brain tissues. Methods: Adult male Sprague-Dawley rats (n=240) were used to assess the contribution of HSP72-containing neurons to the neuroprotective effects of EP+ on ischemic brain injury caused by transient middle cerebral artery occlusion. Results: Significant (P<0.05) increases in the percentages of both old HSP72-containing neurons (NeuN+HSP72 double positive cells) (18~20% vs. 40~50%) and newly formed HSP72-containing neurons (BrdU+NeuN+HSP72 triple positive cells); (2~3% vs. 16~20%) after 3 weeks of exercise coincided with significant (P<0.05) reductions in brain ischemia volume (250 mm3 vs. 100 mm3), brain edema (78% vs. 74% brain water content), blood-brain barrier disruption (1.5 μg/g vs. 0.7 μg/g tissue Evans Blue dye extravasation) and neurological motor deficits (neurological severity scores of 12 vs. 6 and maximal angles of 60° vs. 20°) in brain ischemia rats. Reductions in the percentages of both old (from 40~50% to 10~12%) and newly formed (from 18~20% to 5~7%) HSP72-containing neurons by gene silencing with an intracerebral injection of pSUPER small interfering RNA showed a significant (P<0.05) reversal in the neuroprotective outcomes. Our data provide an inverse correlation between the EP+-mediated increases in both old and newly formed HSP72-containing neurons and the extent of cerebral ischemic injury. Conclusions: The percentages of both old and newly formed HSP72-containing neurons are inversely correlated with the outcomes of ischemic brain injury. Additionally, preischemic treadmill exercise improves the outcomes of ischemic brain injury by preserving both the old and newly formed HSP72-containing neurons in rats.
Collapse
Affiliation(s)
- Yu-Lin Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Center of General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chi-Mei Medical Center, Tainan, Taiwan
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Kao-Chang Lin
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Recreation and Healthcare Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
5
|
Exercise Rehabilitation Attenuates Cognitive Deficits in Rats with Traumatic Brain Injury by Stimulating the Cerebral HSP20/BDNF/TrkB Signalling Axis. Mol Neurobiol 2018; 55:8602-8611. [PMID: 29574629 DOI: 10.1007/s12035-018-1011-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Physical exercise (PE) is an effective method for improving cognitive function among patients with traumatic brain injury (TBI). We previously demonstrated that PE with an infrared-sensing running wheel (ISRW) system provides strong neuroprotection in an experimental animal model of stroke. In this study, we used fluid percussion injury in rats to simulate mild TBI. For rats, we used both passive avoidance learning and the Y-maze tests to evaluate cognitive function. We investigated whether PE rehabilitation attenuated cognitive deficits in rats with TBI and determined the contribution of hippocampal and cortical expression of heat shock protein 20 (HSP20) to PE-mediated cognitive recovery. In addition to increasing hippocampal and cortical expression of HSP20, brain-derived neurotrophic factor (BDNF), and the tropomyosin receptor kinase B (TrkB) ratio, PE rehabilitation significantly attenuated brain contusion and improved cognitive deficits in the rat model. Furthermore, reducing hippocampal and cortical expression of HSP20 with an intracerebral injection of pSUPER hsp20 small interfering RNA significantly diminished the PE-induced overexpression of hippocampal and cortical BDNF and the TrkB ratio and also reversed the beneficial effect of PE in reducing neurotrauma and the cognitive deficits. A positive Pearson correlation was found between HSP20 and BDNF, as well as between HSP20 and TrkB, in the hippocampal and cortical tissues. We thus conclude that post-ischaemic ISRW exercise rehabilitation attenuates cognitive deficits, as well as brain contusions, in TBI rats by stimulating the cerebral HSP20/BDNF/TrkB signalling axis.
Collapse
|
6
|
Carbone F, Oliveira PJ, Bonaventura A, Montecucco F. The pathophysiological role of cholecystokinin-1 receptor in mouse cholelithogenesis. Eur J Clin Invest 2017; 47:195-196. [PMID: 27931080 DOI: 10.1111/eci.12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Federico Carbone
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Aldo Bonaventura
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino - IST, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|