1
|
Krammer TL, Kollars M, Kyrle PA, Hackl M, Eichinger S, Traby L. Plasma levels of platelet-enriched microRNAs change during antiplatelet therapy in healthy subjects. Front Pharmacol 2022; 13:1078722. [PMID: 36578552 PMCID: PMC9790905 DOI: 10.3389/fphar.2022.1078722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Platelets are the main effectors of primary hemostasis but also cause thrombosis in pathological conditions. Antiplatelet drugs are the cornerstone for the prevention of adverse cardiovascular events. Monitoring the extent of platelet inhibition is essential. Currently available platelet function tests come with constraints, limiting use in antiplatelet drug development as well as in clinical routine. With this study, we aim to investigate whether plasma miRNAs might be suitable biomarkers for monitoring antiplatelet treatment. Platelet-poor plasma was obtained from a trial including 87 healthy male volunteers that either received ticagrelor (n = 44) or clopidogrel (n = 43). Blood was collected before drug intake and after 2 h, 6 h, and 24 h. We measured a panel of 11 platelet-enriched miRNAs (thrombomiRs) by RT-qPCR and selected four biomarker candidates (i.e., miR-223-3p, miR-150-5p, miR-126-3p, miR-24-3p). To further characterize those miRNAs, we performed correlation analyses with the number of extracellular vesicles and clotting time dependent on procoagulant vesicles (PPL assay). We show that platelet-enriched miRNAs in the circulation are significantly reduced upon P2Y12-mediated platelet inhibition. This effect occurred fast, reaching its peak after 2 h. Additionally, we demonstrate that higher baseline levels of thrombomiRs are linked to a stronger reduction upon antiplatelet therapy. Finally, we show that miRNAs from our panel might be the cargo of platelet-derived and procoagulant vesicles. In conclusion, we provide evidence that thrombomiR levels change within 2 h after pharmacological platelet inhibition and circulate the body within platelet-derived and procoagulant extracellular vesicles, rendering them potential biomarker candidates for the assessment of in vivo platelet function.
Collapse
Affiliation(s)
| | - Marietta Kollars
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Paul A. Kyrle
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Sabine Eichinger
- Department of Medicine I, Medical University of Vienna, Vienna, Austria,*Correspondence: Sabine Eichinger,
| | - Ludwig Traby
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Leng Q, Ding J, Dai M, Liu L, Fang Q, Wang DW, Wu L, Wang Y. Insights Into Platelet-Derived MicroRNAs in Cardiovascular and Oncologic Diseases: Potential Predictor and Therapeutic Target. Front Cardiovasc Med 2022; 9:879351. [PMID: 35757325 PMCID: PMC9218259 DOI: 10.3389/fcvm.2022.879351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
Non-communicable diseases (NCDs), represented by cardiovascular diseases and cancer, have been the leading cause of death globally. Improvements in mortality from cardiovascular (CV) diseases (decrease of 14%/100,000, United States) or cancers (increase 7.5%/100,000, United States) seem unsatisfactory during the past two decades, and so the search for innovative and accurate biomarkers of early diagnosis and prevention, and novel treatment strategies is a valuable clinical and economic endeavor. Both tumors and cardiovascular system are rich in angiological systems that maintain material exchange, signal transduction and distant regulation. This pattern determines that they are strongly influenced by circulating substances, such as glycolipid metabolism, inflammatory homeostasis and cyclic non-coding RNA and so forth. Platelets, a group of small anucleated cells, inherit many mature proteins, mRNAs, and non-coding RNAs from their parent megakaryocytes during gradual formation and manifest important roles in inflammation, angiogenesis, atherosclerosis, stroke, myocardial infarction, diabetes, cancer, and many other diseases apart from its classical function in hemostasis. MicroRNAs (miRNAs) are a class of non-coding RNAs containing ∼22 nucleotides that participate in many key cellular processes by pairing with mRNAs at partially complementary binding sites for post-transcriptional regulation of gene expression. Platelets contain fully functional miRNA processors in their microvesicles and are able to transport their miRNAs to neighboring cells and regulate their gene expression. Therefore, the importance of platelet-derived miRNAs for the human health is of increasing interest. Here, we will elaborate systematically the roles of platelet-derived miRNAs in cardiovascular disease and cancer in the hope of providing clinicians with new ideas for early diagnosis and therapeutic strategies.
Collapse
|
3
|
Circulating and Platelet MicroRNAs in Cardiovascular Risk Assessment and Antiplatelet Therapy Monitoring. J Clin Med 2022; 11:jcm11071763. [PMID: 35407371 PMCID: PMC8999342 DOI: 10.3390/jcm11071763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Micro-ribonucleic acids (microRNAs) are small molecules that take part in the regulation of gene expression. Their function has been extensively investigated in cardiovascular diseases (CVD). Most recently, miRNA expression levels have been suggested as potential biomarkers of platelet reactivity or response to antiplatelet therapy and tools for risk stratification for recurrence of ischemic evens. Among these, miR-126 and miR-223 have been found to be of particular interest. Despite numerous studies aimed at understanding the prognostic value of miRNA levels, no final conclusions have been drawn thus far regarding their utility in clinical practice. The aim of this review is to critically appraise the evidence on the association between miRNA expression, cardiovascular risk and on-treatment platelet reactivity as well as provide insights on future developments in the field.
Collapse
|
4
|
Abstract
Platelets are essential mediators of physiological hemostasis and pathological thrombosis. Currently available tests and markers of platelet activation did not prove successful in guiding treatment decisions for patients with cardiovascular disease, justifying further research into novel markers of platelet reactivity. Platelets contain a variety of microRNAs (miRNAs) and are a major contributor to the extracellular circulating miRNA pool. Levels of platelet-derived miRNAs in the circulation have been associated with different measures of platelet activation as well as antiplatelet therapy and have therefore been implied as potential new markers of platelet reactivity. In contrast to the ex vivo assessment of platelet reactivity by current platelet function tests, miRNA measurements may enable assessment of platelet reactivity in vivo. It remains to be seen however, whether miRNAs may aid clinical diagnostics. Major limitations in the platelet miRNA research field remain the susceptibility to preanalytical variation, non-standardized sample preparation and data normalization that hampers inter-study comparisons. In this review, we provide an overview of the literature on circulating miRNAs as biomarkers of platelet activation, highlighting the underlying biology, the application in patients with cardiovascular disease and antiplatelet therapy and elaborating on technical limitations regarding their quantification in the circulation.
Collapse
Affiliation(s)
- Clemens Gutmann
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| |
Collapse
|
5
|
Pedersen OB, Hvas AM, Grove EL, Larsen SB, Pasalic L, Kristensen SD, Nissen PH. Association of whole blood microRNA expression with platelet function and turnover in patients with coronary artery disease. Thromb Res 2022; 211:98-105. [DOI: 10.1016/j.thromres.2022.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
|
6
|
The Role and Molecular Mechanism of P2Y12 Receptors in the Pathogenesis of Atherosclerotic Cardiovascular Diseases. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The P2Y receptor family is a class of G protein-coupled receptors activated primarily by adenosine triphosphate (ATP), adenosine diphosphate (ADP), uridine triphosphate (UTP) and uridine diphosphate (UDP). The P2Y12 receptor is expressed on platelets which mediates platelet aggregation and morphological changes. At the same time, during the process of vascular remodeling and atherosclerosis, ADP can also promote the migration and proliferation of vascular smooth muscle and endothelial cells through P2Y12 receptor activating. Furthermore, P2Y12 is involved in many signal transductions processes, such as intimal hyperplasia, monocyte infiltration and so on, which play an important role in immune inflammation and brain injury. In order to solve the diseases induced by P2Y12 receptor, inhibitors such as ticagrelor, clopidogrel were widely used for cardiovascular diseases. However, there were some problems, such as limited antithrombotic effect, remain unsolved. This article summarizes the role and molecular mechanism of P2Y12 receptors in the pathogenesis of cardiovascular-related diseases, providing in-depth expounding on the molecular mechanism of P2Y12 receptor inhibitors and contributing to the treatment of diseases based on P2Y12 receptors.
Collapse
|
7
|
Zhang Q, Zhu F, Luo Y, Liao J, Cao J, Xue T. Platelet miR-107 Participates in Clopidogrel Resistance after PCI Treatment by Regulating P2Y12. Acta Haematol 2021; 145:46-53. [PMID: 34474410 DOI: 10.1159/000517811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/11/2021] [Indexed: 01/20/2023]
Abstract
INTRODUCTION High platelet reactivity (HPR) caused by clopidogrel tolerance is an adverse reaction of acute coronary syndrome (ACS) patients who receive clopidogrel antiplatelet therapy after percutaneous coronary intervention (PCI) surgery. Platelet microRNA (miRNA) is related to platelet reactivity. This study explored the mechanism of platelet miRNA in regulating platelet reactivity. METHODS We recruited 50 ACS/PCI patients and divided them into the HPR group (P2Y12 reaction units [PRU] ≥300) and the LPR group (PRU < 170) according to the PRU through the VerifyNow P2Y12 assay. P2Y12-related miRNAs were screened by TargetScan, miRWalk, and Gene Expression Omnibus. The expressions of P2Y12 and miRNAs in the HPR group and the LPR group were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Pearson correlation analysis was used to determine the correlation between P2Y12 and miRNAs. The interactions between P2Y12 and miR-107 were predicted by TargetScan and verified by dual-luciferase reporter assay. The regulation of miR-107 mimic or inhibitor on P2Y12 expression was detected by qRT-PCR and Western blot. RESULTS There were 22 patients in the LPR group and 28 patients in the HPR group. PY212 was highly expressed in the HPR group compared with the LPR group. We screened the P2Y12-related miRNAs (miR-145-5p, miR-4701-3p, miR-107, and miR-15b-5p), but only miR-107 and miR-15b-5p expressions were downregulated in the HPR group and were negatively correlated with PY212 expression. P2Y12 was the target gene of miR-107. PY212 expression was inhibited by miR-107 overexpression but suppressed by miR-107 silencing. CONCLUSION Platelet miR-107 participated in clopidogrel resistance in ACS/PCI patients by regulating P2Y12 expression.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| | - Fan Zhu
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| | - Yuyin Luo
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| | - Jun Liao
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| | - Jiancheng Cao
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| | - Tao Xue
- Department of Medical Therapeutics, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| |
Collapse
|
8
|
Alhazzani A, Venkatachalapathy P, Padhilahouse S, Sellappan M, Munisamy M, Sekaran M, Kumar A. Biomarkers for Antiplatelet Therapies in Acute Ischemic Stroke: A Clinical Review. Front Neurol 2021; 12:667234. [PMID: 34177775 PMCID: PMC8222621 DOI: 10.3389/fneur.2021.667234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke is one of the world's leading causes of disability and death. Antiplatelet agents are administered to acute ischemic stroke patients as secondary prevention. Clopidogrel involves biotransformation by cytochrome P450 (CYP) enzymes into an active metabolite, and single nucleotide polymorphisms (SNPs) can influence the efficacy of this biotransformation. Despite the therapeutic advantages of aspirin, there is significant inter-individual heterogeneity in response to this antiplatelet drug. In this clinical review, the recent advances in the biomarkers of antiplatelet agents in acute ischemic stroke are discussed. The studies reviewed herein highlight the clinical relevance of antiplatelet resistance, pharmacotherapy of antiplatelet agents predicting drug response, strategies for identifying aspirin resistance, pharmacogenetic variants of antiplatelet agents, miRNAs, and extracellular vesicles (EVs) as biomarkers toward the personalized approach in the management of acute ischemic stroke. The precise pathways contributing to antiplatelet resistance are not very well known but are presumably multi-factorial. It is essential to understand the clinical relevance of clopidogrel and aspirin-related single nucleotide polymorphism (SNPs) as potential predictive and prognostic biomarkers. Prasugrel is a next-generation antiplatelet agent that prevents ADP-platelet activation by binding irreversibly to P2Y12 receptor. There are sporadic reports of prasugrel resistance and polymorphisms in the Platelet endothelial aggregation receptor-1 (PEAR1) that may contribute to a change in the pharmacodynamics response. Ticagrelor, a direct-acting P2Y12-receptor antagonist, is easily absorbed and partly metabolized to major AR-C124910XX metabolite (ARC). Ticagrelor's primary active metabolite, ARC124910XX (ARC), is formed via the most abundant hepatic cytochrome P450 (CYP) enzyme, CYP3A4, and CYP3A5. The integration of specific biomarkers, genotype as well as phenotype-related data in antiplatelet therapy stratification in patients with acute ischemic stroke will be of great clinical significance and could be used as a guiding tool for more effective, personalized therapy.
Collapse
Affiliation(s)
- Adel Alhazzani
- Neurology Unit, Medicine Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Sruthi Padhilahouse
- Department of Pharmacy Practice, Karpagam College of Pharmacy, Coimbatore, India
| | - Mohan Sellappan
- Department of Pharmacy Practice, Karpagam College of Pharmacy, Coimbatore, India
| | - Murali Munisamy
- Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, India
| | - Mangaiyarkarasi Sekaran
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Amit Kumar
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Pedersen OB, Grove EL, Kristensen SD, Nissen PH, Hvas AM. MicroRNA as Biomarkers for Platelet Function and Maturity in Patients with Cardiovascular Disease. Thromb Haemost 2021; 122:181-195. [PMID: 34091883 DOI: 10.1055/s-0041-1730375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with cardiovascular disease (CVD) are at increased risk of suffering myocardial infarction. Platelets are key players in thrombus formation and, therefore, antiplatelet therapy is crucial in the treatment and prevention of CVD. MicroRNAs (miRs) may hold the potential as biomarkers for platelet function and maturity. This systematic review was conducted using the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). To identify studies investigating the association between miRs and platelet function and maturity in patients with CVD, PubMed and Embase were searched on October 13 and December 13, 2020 without time boundaries. Risk of bias was evaluated using a standardized quality assessment tool. Of the 16 included studies, 6 studies were rated "good" and 10 studies were rated "fair." In total, 45 miRs correlated significantly with platelet function or maturity (rho ranging from -0.68 to 0.38, all p < 0.05) or differed significantly between patients with high platelet reactivity and patients with low platelet reactivity (p-values ranging from 0.0001 to 0.05). Only four miRs were investigated in more than two studies, namely miR-223, miR-126, miR-21 and miR-150. Only one study reported on the association between miRs and platelet maturity. In conclusion, a total of 45 miRs were associated with platelet function or maturity in patients with CVD, with miR-223 and miR-126 being the most frequently investigated. However, the majority of the miRs were only investigated in one study. More data are needed on the potential use of miRs as biomarkers for platelet function and maturity in CVD patients.
Collapse
Affiliation(s)
- Oliver Buchhave Pedersen
- Department of Clinical Biochemistry, Thrombosis and Haemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Erik Lerkevang Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Steen Dalby Kristensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Peter H Nissen
- Department of Clinical Biochemistry, Thrombosis and Haemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Thrombosis and Haemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Czajka P, Fitas A, Jakubik D, Eyileten C, Gasecka A, Wicik Z, Siller-Matula JM, Filipiak KJ, Postula M. MicroRNA as Potential Biomarkers of Platelet Function on Antiplatelet Therapy: A Review. Front Physiol 2021; 12:652579. [PMID: 33935804 PMCID: PMC8081881 DOI: 10.3389/fphys.2021.652579] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs, able to regulate cellular functions by specific gene modifications. Platelets are the major source for circulating miRNAs, with significant regulatory potential on cardiovascular pathophysiology. MiRNAs have been shown to modify the expression of platelet proteins influencing platelet reactivity. Circulating miRNAs can be determined from plasma, serum, or whole blood, and they can be used as diagnostic and prognostic biomarkers of platelet reactivity during antiplatelet therapy as well as novel therapeutic targets in cardiovascular diseases (CVDs). Herein, we review diagnostic and prognostic value of miRNAs levels related to platelet reactivity based on human studies, presenting its interindividual variability as well as the substantial role of genetics. Furthermore, we discuss antiplatelet treatment in the context of miRNAs alterations related to pathways associated with drug response.
Collapse
Affiliation(s)
- Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Aleksandra Gasecka
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Krzysztof J Filipiak
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| |
Collapse
|
11
|
Stojkovic S, Wadowski PP, Haider P, Weikert C, Pultar J, Lee S, Eichelberger B, Hengstenberg C, Wojta J, Panzer S, Demyanets S, Gremmel T. Circulating MicroRNAs and Monocyte-Platelet Aggregate Formation in Acute Coronary Syndrome. Thromb Haemost 2021; 121:913-922. [PMID: 33469902 DOI: 10.1055/s-0040-1722226] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Monocyte-platelet aggregates (MPAs) are a sensitive marker of in vivo platelet activation in acute coronary syndrome (ACS) and associated with clinical outcomes. MicroRNAs (miRs) play an important role in the regulation of platelet activation, and may influence MPA formation. Both, miRs and MPA, could be influenced by the type of P2Y12 inhibitor. AIM To study the association of platelet-related miRs with MPA formation in ACS patients on dual antiplatelet therapy (DAPT), and to compare miRs and MPA levels between prasugrel- and ticagrelor-treated patients. METHODS AND RESULTS We analyzed 10 circulating platelet-related miRs in 160 consecutive ACS patients on DAPT with low-dose aspirin and either prasugrel (n = 80) or ticagrelor (n = 80). MPA formation was measured by flow cytometry without addition of platelet agonists and after simulation with the toll-like receptor (TLR)-1/2 agonist Pam3CSK4, adenosine diphosphate (ADP), or arachidonic acid (AA). In multivariate regression analyses, we identified miR-21 (β = 9.50, 95% confidence interval [CI]: 1.60-17.40, p = 0.019) and miR-126 (β = 7.50, 95% CI: 0.55-14.44, p = 0.035) as independent predictors of increased MPA formation in vivo and after TLR-1/2 stimulation. In contrast, none of the investigated miRs was independently associated with MPA formation after stimulation with ADP or AA. Platelet-related miR expression and MPA formation did not differ significantly between prasugrel- and ticagrelor-treated patients. CONCLUSION Platelet-related miR-21 and miR-126 are associated with MPA formation in ACS patients on DAPT. miRs and MPA levels were similar in prasugrel- and ticagrelor-treated patients.
Collapse
Affiliation(s)
- Stefan Stojkovic
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Patricia P Wadowski
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Patrick Haider
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Constantin Weikert
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Joseph Pultar
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Silvia Lee
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Beate Eichelberger
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Core Facilities, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Simon Panzer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Gremmel
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| |
Collapse
|
12
|
Wang Z, Xia L, Xu Q, Ji Q, Yao Z, Lv Q. MiR-223 levels predicting perioperative bleeding in off-pump coronary artery bypass grafting. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1341. [PMID: 33313086 PMCID: PMC7723557 DOI: 10.21037/atm-20-2022b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background To investigate the predictive value of platelet-related microRNAs (miRNAs) for bleeding during and after off-pump coronary artery bypass grafting (OPCABG) and the influence of dual antiplatelet therapy (DAPT) on miRNAs. Methods This prospective study included 59 patients scheduled for OPCABG. The plasma miR-126 and miR-223 levels were measured and platelet aggregation was determined by thromboelastography during DAPT. The plasma miRNA levels were compared between patients treated with ticagrelor or clopidogrel. Multivariable logistic regression analysis was performed to determine the independent risk factors for bleeding during and after surgery. Active bleeding was defined as a blood loss >1.5 mL/kg/h for 6 consecutive hours within the first 24 hours or in case of reoperation during the first 12 postoperative hours. Severe perioperative bleeding was defined using the universal definition of perioperative bleeding in adult cardiac surgery. Results Higher circulating miR-223 levels [odds ratio (OR) =1.348, 95% confidence interval (CI): 1.001–1.814, P=0.047] and lower body mass index (OR =0.648, 95% CI: 0.428–0.980, P=0.040) were independent predictors for severe perioperative bleeding in OPCABG. Ticagrelor treatment led to significant increases in circulating miR-223 levels compared with clopidogrel treatment. Conclusions The plasma miR-223 levels served as a predictor for bleeding during and after OPCABG. Circulating miR-223 levels were significantly elevated with ticagrelor treatment compared with clopidogrel treatment. MiR-223 may be a novel biomarker for bleeding in cardiac surgery and can help explain the different efficacies of ticagrelor and clopidogrel.
Collapse
Affiliation(s)
- Zi Wang
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Limin Xia
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Xu
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiuyi Ji
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhifeng Yao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianzhou Lv
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
microRNAs as promising biomarkers of platelet activity in antiplatelet therapy monitoring. Int J Mol Sci 2020; 21:ijms21103477. [PMID: 32423125 PMCID: PMC7278969 DOI: 10.3390/ijms21103477] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Given the high morbidity and mortality of cardiovascular diseases (CVDs), novel biomarkers for platelet reactivity are urgently needed. Ischemic events in CVDs are causally linked to platelets, small anucleate cells important for hemostasis. The major side-effect of antiplatelet therapy are life-threatening bleeding events. Current platelet function tests are not sufficient in guiding treatment decisions. Platelets host a broad spectrum of microRNAs (miRNAs) and are a major source of cell-free miRNAs in the blood stream. Platelet-related miRNAs have been suggested as biomarkers of platelet activation and assessment of antiplatelet therapy responsiveness. Platelets release miRNAs upon activation, possibly leading to alterations of plasma miRNA levels in conjunction with CVD or inadequate platelet inhibition. Unlike current platelet function tests, which measure platelet activation ex vivo, signatures of platelet-related miRNAs potentially enable the assessment of in vivo platelet reactivity. Evidence suggests that some miRNAs are responsive to platelet inhibition, making them promising biomarker candidates. In this review, we explain the secretion of miRNAs upon platelet activation and discuss the potential use of platelet-related miRNAs as biomarkers for CVD and antiplatelet therapy monitoring, but also highlight remaining gaps in our knowledge and uncertainties regarding clinical utility. We also elaborate on technical issues and limitations concerning plasma miRNA quantification.
Collapse
|