1
|
Bautista CJ, Reyes-Castro LA, Lomas-Soria C, Ibáñez CA, Zambrano E. Late-in-life Exercise Ameliorates the Aging Trajectory Metabolism Programmed by Maternal Obesity in Rats: It is Never Too Late. Arch Med Res 2024; 55:103002. [PMID: 38735235 DOI: 10.1016/j.arcmed.2024.103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Maternal obesity (MO) has been shown to adversely affect metabolic, oxidative, reproductive, and cognitive function in offspring. However, it is unclear whether lifestyle modification can ameliorate the metabolic and organ dysfunction programmed by MO and prevent the effects of metabolic syndrome in adulthood. This study aimed to evaluate whether moderate voluntary exercise in the offspring of rats born to obese mothers can ameliorate the adverse effects of MO programming on metabolism and liver function in mid-adulthood. METHODS Offspring of control (CF1) and MOF1 mothers were fed with a control diet from weaning. Adult males and females participated in 15 min exercise sessions five days/week. Metabolic parameters were analyzed before and after the exercise intervention. Liver oxidative stress biomarkers and antioxidant enzymes were analyzed before and after the intervention. RESULTS Males showed that CF1ex ran more than MOF1ex and increased the distance covered. In contrast, females in both groups ran similar distances and remained constant but ran more distance than males. At PND 300 and 450, male and female MOF1 had higher leptin, triglycerides, insulin, and HOMA-IR levels than CF1. However, male MOF1ex had lower triglycerides, insulin, and HOMA-IR levels than MOF1. Improvements in liver fat and antioxidant enzymes were observed in CF1ex and MOF1ex males and females compared to their respective CF1 and MOF1 groups. CONCLUSION These findings suggest that moderate voluntary exercise, even when started in mid-adulthood, can improve metabolic outcomes and delay accelerated metabolic aging in MO-programmed rats in a sex-dependent manner.
Collapse
Affiliation(s)
- Claudia J Bautista
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico
| | - Luis A Reyes-Castro
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico
| | - Consuelo Lomas-Soria
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico; Consejo Nacional de Humanidades, Ciencias y Tecnologías, Cátedras Investigador por México, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - Carlos A Ibáñez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico
| | - Elena Zambrano
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico; Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
2
|
Vogt MC, Hobert O. Starvation-induced changes in somatic insulin/IGF-1R signaling drive metabolic programming across generations. SCIENCE ADVANCES 2023; 9:eade1817. [PMID: 37027477 PMCID: PMC10081852 DOI: 10.1126/sciadv.ade1817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/08/2023] [Indexed: 05/30/2023]
Abstract
Exposure to adverse nutritional and metabolic environments during critical periods of development can exert long-lasting effects on health outcomes of an individual and its descendants. Although such metabolic programming has been observed in multiple species and in response to distinct nutritional stressors, conclusive insights into signaling pathways and mechanisms responsible for initiating, mediating, and manifesting changes to metabolism and behavior across generations remain scarce. By using a starvation paradigm in Caenorhabditis elegans, we show that starvation-induced changes in dauer formation-16/forkhead box transcription factor class O (DAF-16/FoxO) activity, the main downstream target of insulin/insulin-like growth factor 1 (IGF-1) receptor signaling, are responsible for metabolic programming phenotypes. Tissue-specific depletion of DAF-16/FoxO during distinct developmental time points demonstrates that DAF-16/FoxO acts in somatic tissues, but not directly in the germline, to both initiate and manifest metabolic programming. In conclusion, our study deciphers multifaceted and critical roles of highly conserved insulin/IGF-1 receptor signaling in determining health outcomes and behavior across generations.
Collapse
|
3
|
Developmental Programming in Animal Models: Critical Evidence of Current Environmental Negative Changes. Reprod Sci 2023; 30:442-463. [PMID: 35697921 PMCID: PMC9191883 DOI: 10.1007/s43032-022-00999-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
The Developmental Origins of Health and Disease (DOHaD) approach answers questions surrounding the early events suffered by the mother during reproductive stages that can either partially or permanently influence the developmental programming of children, predisposing them to be either healthy or exhibit negative health outcomes in adulthood. Globally, vulnerable populations tend to present high obesity rates, including among school-age children and women of reproductive age. In addition, adults suffer from high rates of diabetes, hypertension, cardiovascular, and other metabolic diseases. The increase in metabolic outcomes has been associated with the combination of maternal womb conditions and adult lifestyle-related factors such as malnutrition and obesity, smoking habits, and alcoholism. However, to date, "new environmental changes" have recently been considered negative factors of development, such as maternal sedentary lifestyle, lack of maternal attachment during lactation, overcrowding, smog, overurbanization, industrialization, noise pollution, and psychosocial stress experienced during the current SARS-CoV-2 pandemic. Therefore, it is important to recognize how all these factors impact offspring development during pregnancy and lactation, a period in which the subject cannot protect itself from these mechanisms. This review aims to introduce the importance of studying DOHaD, discuss classical programming studies, and address the importance of studying new emerging programming mechanisms, known as actual lifestyle factors, during pregnancy and lactation.
Collapse
|
4
|
Sutton NR, Malhotra R, Hilaire C, Aikawa E, Blumenthal RS, Gackenbach G, Goyal P, Johnson A, Nigwekar SU, Shanahan CM, Towler DA, Wolford BN, Chen Y. Molecular Mechanisms of Vascular Health: Insights From Vascular Aging and Calcification. Arterioscler Thromb Vasc Biol 2023; 43:15-29. [PMID: 36412195 PMCID: PMC9793888 DOI: 10.1161/atvbaha.122.317332] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular disease is the most common cause of death worldwide, especially beyond the age of 65 years, with the vast majority of morbidity and mortality due to myocardial infarction and stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and the biologic changes associated with aging. The pathogenesis underlying the development of vascular aging, and vascular calcification with aging, in particular, is still not fully understood. Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, environmental factors, including diabetes and chronic kidney disease, and the plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies to promote healthy vascular aging. This article summarizes current knowledge of concepts and mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.
Collapse
Affiliation(s)
- Nadia R. Sutton
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Cynthia Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, 1744 BSTWR, 200 Lothrop St, Pittsburgh, PA, 15260 USA
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Roger S. Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease; Baltimore, MD
| | - Grace Gackenbach
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Parag Goyal
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Adam Johnson
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Sagar U. Nigwekar
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Catherine M. Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | - Dwight A. Towler
- Department of Medicine | Endocrine Division and Pak Center for Mineral Metabolism Research, UT Southwestern Medical Center, Dallas, TX USA
| | - Brooke N. Wolford
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham and Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| |
Collapse
|
5
|
Wu T, Zhou K, Hua Y, Zhang W, Li Y. The molecular mechanisms in prenatal drug exposure-induced fetal programmed adult cardiovascular disease. Front Pharmacol 2023; 14:1164487. [PMID: 37153765 PMCID: PMC10157035 DOI: 10.3389/fphar.2023.1164487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
The "developmental origins of health and disease" (DOHaD) hypothesis posits that early-life environmental exposures have a lasting impact on individual's health and permanently shape growth, structure, and metabolism. This reprogramming, which results from fetal stress, is believed to contribute to the development of adulthood cardiovascular diseases such as hypertension, coronary artery disease, heart failure, and increased susceptibility to ischemic injuries. Recent studies have shown that prenatal exposure to drugs, such as glucocorticoids, antibiotics, antidepressants, antiepileptics, and other toxins, increases the risk of adult-onset cardiovascular diseases. In addition, observational and animal experimental studies have demonstrated the association between prenatal drug exposure and the programming of cardiovascular disease in the offspring. The molecular mechanisms underlying these effects are still being explored but are thought to involve metabolism dysregulation. This review summarizes the current evidence on the relationship between prenatal drug exposure and the risk of adult cardiovascular disorders. Additionally, we present the latest insights into the molecular mechanisms that lead to programmed cardiovascular phenotypes after prenatal drug exposure.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wen Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wen Zhang, ; Yifei Li,
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wen Zhang, ; Yifei Li,
| |
Collapse
|
6
|
Mentis AFA, Paltoglou G, Demakakos P, Ahmed F, Chrousos GP. Could COVID-19's Aftermath on Children's Health Be Felt into the 22nd Century? CHILDREN (BASEL, SWITZERLAND) 2022; 9:482. [PMID: 35455526 PMCID: PMC9031144 DOI: 10.3390/children9040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
The COVID-19 pandemic has massively affected people's health, societies, and the global economy. Our lives are no longer as they were before COVID-19, and, most likely, will never be the same again. We hypothesize that the effect of the COVID-19 pandemic on population health and the economy will last for a very long time and will still be felt in the 22nd century. Our hypothesis is based on evidence from the 1918-1919 influenza pandemic, the Dutch famine during the Second World War, and the 2007-2008 economic crisis, as well as from the rationally predicted impact of COVID-19 on human development. We expect that the COVID-19 pandemic, including the mitigation measures taken against it, will affect children's development in multiple ways, including obesity, both while in utero and during critical and sensitive windows of development, including the early childhood years and those of puberty and adolescence. The psychosocial and biological impact of this effect will be considerable and unequally distributed. The implications will last at least a lifetime, and, through inter-generational transmission, will likely take us to future generations, into the 22nd century. We argue for the urgent need of designing and initiating comprehensive longitudinal cohort studies to closely monitor the long-term effects of COVID-19 on children conceived, born, and raised during the pandemic. Such an approach requires a close and effective collaboration between scientists, healthcare providers, policymakers, and the younger generations, and it will hopefully uncover evidence necessary to understand and mitigate the impact of the pandemic on people's lives in the 21st and 22nd centuries.
Collapse
Affiliation(s)
- Alexios-Fotios A. Mentis
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.P.); (G.P.C.)
- Adolescent Health Care, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - George Paltoglou
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.P.); (G.P.C.)
- Division of Endocrinology, Metabolism and Diabetes, First Department of Paediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Panayotes Demakakos
- Department of Epidemiology and Public Health, University College London, London WC1E 6BT, UK;
| | - Faheem Ahmed
- NHS England, London SE1 6LH, UK;
- Graduate School of Business, Columbia University, New York, NY 10027, USA
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.P.); (G.P.C.)
- Adolescent Health Care, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| |
Collapse
|
7
|
Ge C, Xu D, Yu P, Fang M, Guo J, Xu D, Qiao Y, Chen S, Zhang Y, Wang H. P-gp expression inhibition mediates placental glucocorticoid barrier opening and fetal weight loss. BMC Med 2021; 19:311. [PMID: 34876109 PMCID: PMC8653610 DOI: 10.1186/s12916-021-02173-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prenatal adverse environments can cause fetal intrauterine growth retardation (IUGR) and higher susceptibility to multiple diseases after birth, related to multi-organ development programming changes mediated by intrauterine overexposure to maternal glucocorticoids. As a glucocorticoid barrier, P-glycoprotein (P-gp) is highly expressed in placental syncytiotrophoblasts; however, the effect of P-gp on the occurrence of IUGR remains unclear. METHODS Human placenta and fetal cord blood samples of IUGR fetuses were collected, and the related indexes were detected. Pregnant Wistar rats were administered with 30 mg/kg·d (low dose) and 120 mg/kg·d (high dose) caffeine from gestational day (GD) 9 to 20 to construct the rat IUGR model. Pregnant mice were administered with caffeine (120 mg/kg·d) separately or combined with sodium ferulate (50 mg/kg·d) from gestational day GD 9 to 18 to confirm the intervention target on fetal weight loss caused by prenatal caffeine exposure (PCE). The fetal serum/placental corticosterone level, placental P-gp expression, and related indicator changes were analyzed. In vitro, primary human trophoblasts and BeWo cells were used to confirm the effect of caffeine on P-gp and its mechanism. RESULTS The placental P-gp expression was significantly reduced, but the umbilical cord blood cortisol level was increased in clinical samples of the IUGR neonates, which were positively and negatively correlated with the neonatal birth weight, respectively. Meanwhile, in the PCE-induced IUGR rat model, the placental P-gp expression of IUGR rats was decreased while the corticosterone levels of the placentas/fetal blood were increased, which were positively and negatively correlated with the decreased placental/fetal weights, respectively. Combined with the PCE-induced IUGR rat model, in vitro caffeine-treated placental trophoblasts, we confirmed that caffeine decreased the histone acetylation and expression of P-gp via RYR/JNK/YB-1/P300 pathway, which inhibited placental and fetal development. We further demonstrated that P-gp inducer sodium ferulate could reverse the inhibitory effect of caffeine on the fetal body/placental weight. Finally, clinical specimens and other animal models of IUGR also confirmed that the JNK/YB-1 pathway is a co-regulatory mechanism of P-gp expression inhibition, among which the expression of YB-1 is the most stable. Therefore, we proposed that YB-1 could be used as the potential early warning target for the opening of the placental glucocorticoid barrier, the occurrence of IUGR, and the susceptibility of a variety of diseases. CONCLUSIONS This study, for the first time, clarified the critical role and epigenetic regulation mechanism of P-gp in mediating the opening mechanism of the placental glucocorticoid barrier, providing a novel idea for exploring the early warning, prevention, and treatment strategies of IUGR.
Collapse
Affiliation(s)
- Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Juanjuan Guo
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Dan Xu
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuan Qiao
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Sijia Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|