1
|
Bin Dayel AF, Alrasheed NM, Alonazi AS, Alamin MA, Al-Mutairi NM, Alateeq RA. Renoprotective effect of liraglutide on diabetic nephropathy by modulation of Krüppel-like transcription factor 5 expression in rats. J Pharm Pharmacol 2024; 76:1563-1571. [PMID: 39403839 DOI: 10.1093/jpp/rgae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/17/2024] [Indexed: 03/22/2025]
Abstract
OBJECTIVES Diabetic nephropathy (DN) is a serious consequence of diabetes that can develop through the lysophosphatidic acid axis. The purpose of this study was to determine whether the antidiabetic drug liraglutide can slow the development of diabetic kidney damage by altering the lysophosphatidic acid axis via KLF5. METHODS Wistar albino rats were divided into nondiabetic and diabetic rats (resulting from an intraperitoneal streptozotocin dose of 30 mg/kg and a high-fat diet). These rats were further divided into four groups: nondiabetic control, liraglutide-treated nondiabetic, diabetic control, and liraglutide-treated diabetic. The nondiabetic and diabetic control groups received normal saline for 42 days, while the liraglutide-treated nondiabetic and diabetic groups received normal saline for 21 days, followed by a subcutaneous dose of liraglutide (200 μg/kg/day) for 21 days. Subsequently, serum levels of DN biomarkers were evaluated, and kidney tissues were histologically examined. The protein expression of PCNA, autotaxin, and KLF5 was detected. KEY FINDINGS Liraglutide treatment in diabetic rats decreased DN biomarkers, histological abnormalities in kidney tissues, and the protein expression of PCNA, autotaxin, and KLF5. CONCLUSION Liraglutide can slow the progression of DN by modulating KLF5-related lysophosphatidic acid axis. Thus, liraglutide may be an effective treatment for preventing or mitigating diabetes-related kidney damage.
Collapse
Affiliation(s)
- Anfal F Bin Dayel
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nouf M Alrasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asma S Alonazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Maha A Alamin
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nawal M Al-Mutairi
- PharmD Program, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Raghad A Alateeq
- PharmD Program, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Lee SO, Kuthati Y, Huang WH, Wong CS. Semaglutide Ameliorates Diabetic Neuropathic Pain by Inhibiting Neuroinflammation in the Spinal Cord. Cells 2024; 13:1857. [PMID: 39594606 PMCID: PMC11593193 DOI: 10.3390/cells13221857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1) receptor agonists are frequently used to treat type 2 diabetes and obesity. Despite the development of several drugs for neuropathic pain management, their poor efficacy, tolerance, addiction potential, and side effects limit their usage. Teneligliptin, a DPP-4 inhibitor, has been shown to reduce spinal astrocyte activation and neuropathic pain caused by partial sciatic nerve transection. Additionally, we showed its capacity to improve the analgesic effects of morphine and reduce analgesic tolerance. Recent studies indicate that GLP-1 synthesized in the brain activates GLP-1 receptor signaling pathways, essential for neuroprotection and anti-inflammatory effects. Multiple in vitro and in vivo studies using preclinical models of neurodegenerative disorders have shown the anti-inflammatory properties associated with glucagon-like peptide-1 receptor (GLP-1R) activation. This study aimed to investigate the mechanism of antinociception and the effects of the GLP-1 agonist semaglutide (SEMA) on diabetic neuropathic pain in diabetic rats. METHODS Male Wistar rats, each weighing between 300 and 350 g, were categorized into four groups: one non-diabetic sham group and three diabetic groups. The diabetic group received a single intraperitoneal injection of streptozotocin (STZ) at a dosage of 60 mg/kg to induce diabetic neuropathy. After 4 weeks of STZ injection, one diabetic group was given saline (vehicle), and the other two were treated with either 1× SEMA (1.44 mg/kg, orally) or 2× SEMA (2.88 mg/kg, orally). Following a 4-week course of oral drug treatment, behavioral, biochemical, and immunohistochemical analyses were carried out. The mechanical allodynia, thermal hyperalgesia, blood glucose, advanced glycation end products (AGEs), plasma HbA1C, and spinal inflammatory markers were evaluated. RESULTS SEMA treatment significantly reduced both allodynia and hyperalgesia in the diabetic group. SEMA therapy had a limited impact on body weight restoration and blood glucose reduction. In diabetic rats, SEMA lowered the amounts of pro-inflammatory cytokines in the spinal cord and dorsal horn. It also lowered the activation of microglia and astrocytes in the dorsal horn. SEMA significantly reduced HbA1c and AGE levels in diabetic rats compared to the sham control group. CONCLUSIONS These results indicate SEMA's neuroprotective benefits against diabetic neuropathic pain, most likely by reducing inflammation and oxidative stress by inhibiting astrocyte and microglial activity. Our findings suggest that we can repurpose GLP-1 agonists as potent anti-hyperalgesic and anti-inflammatory drugs to treat neuropathic pain without serious side effects.
Collapse
Affiliation(s)
- Sing-Ong Lee
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan; (S.-O.L.); (Y.K.); (W.-H.H.)
- Department of Health and Leisure Management, Yuanpei University of Medical Technology, Hsinchu City 306, Taiwan
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan; (S.-O.L.); (Y.K.); (W.-H.H.)
| | - Wei-Hsiu Huang
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan; (S.-O.L.); (Y.K.); (W.-H.H.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan; (S.-O.L.); (Y.K.); (W.-H.H.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
3
|
Keller F, Denicolò S, Leierer J, Kruus M, Heinzel A, Kammer M, Ju W, Nair V, Burdet F, Ibberson M, Menon R, Otto E, Choi YJ, Pyle L, Ladd P, Bjornstad PM, Eder S, Rosivall L, Mark PB, Wiecek A, Heerspink HJL, Kretzler M, Oberbauer R, Mayer G, Perco P. Association of Urinary Epidermal Growth Factor, Fatty Acid-Binding Protein 3, and Vascular Cell Adhesion Molecule 1 Levels with the Progression of Early Diabetic Kidney Disease. Kidney Blood Press Res 2024; 49:1013-1025. [PMID: 39510044 DOI: 10.1159/000542267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is a common cause of chronic kidney disease with around 25-40% of patients with diabetes being affected. The course of DKD is variable, and estimated glomerular filtration rate (eGFR) and albuminuria, the currently used clinical markers, are not able to accurately predict the individual disease trajectory, in particular in early stages of the disease. The aim of this study was to assess the association of urine levels of selected protein biomarkers with the progression of DKD at an early stage of disease. METHODS We measured 22 protein biomarkers using the Mesoscale Discovery platform in 461 urine samples of the PROVALID cohort, an observational study of patients with type 2 diabetes mellitus followed at the primary health care level for a minimum of 4 years. Odds ratios (ORs) were estimated for the effect of marker values above median on fast progression using unadjusted and adjusted logistic regression models. RNA expression at the single-cell level in kidney biopsy samples obtained from a cohort of young persons with type 2 diabetes mellitus was in addition determined for markers showing significant associations with disease progression. RESULTS Increased urinary levels of epidermal growth factor (EGF) were linked to lower odds of fast progression (defined as annual eGFR decline greater than 2.58 mL/min per 1.73 m2) with an OR of 0.60 (95% CI: 0.46, 0.78). The association with outcome was even stronger when adjusting for a set of 14 baseline clinical parameters including age, biological sex, eGFR, body mass index, albuminuria, and HbA1c. Elevated urinary levels of fatty acid-binding protein 3 (FABP3) and vascular cell adhesion molecule 1 (VCAM1) were each significantly associated with fast progression with an OR of 1.44 (95% CI: 1.11, 1.87) and an OR of 1.41 (95% CI: 1.08, 1.83), respectively. Enriched expression of EGF and FABP3 was observed in distal convoluted tubular cells and VCAM1 in parietal epithelial cells at single-cell level from biopsies of patients with early DKD. CONCLUSION In summary, we show that lower urinary levels of EGF and higher urinary levels of FABP3 and VCAM1 are significantly associated with DKD progression in early-stage disease.
Collapse
Affiliation(s)
- Felix Keller
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Sara Denicolò
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Johannes Leierer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Maren Kruus
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Andreas Heinzel
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Michael Kammer
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
- Institute of Clinical Biometrics, Centre for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Wenjun Ju
- Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Frederic Burdet
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rajasree Menon
- Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Edgar Otto
- Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ye Ji Choi
- Department of Pediatrics and Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Laura Pyle
- Department of Pediatrics and Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Patricia Ladd
- Department of Pediatrics and Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Petter M Bjornstad
- Department of Pediatrics and Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Susanne Eder
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Laszlo Rosivall
- International Nephrology Research and Training Centre, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Patrick Barry Mark
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Katowice, Poland
| | - Hiddo J Lamber Heerspink
- Clinical Pharmacy and Pharmacology, Faculty of Medical Sciences, University Medical Centre Groningen, Groningen, The Netherlands
| | - Matthias Kretzler
- Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Rainer Oberbauer
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Paul Perco
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Chen B, Yu X, Horvath-Diano C, Ortuño MJ, Tschöp MH, Jastreboff AM, Schneeberger M. GLP-1 programs the neurovascular landscape. Cell Metab 2024; 36:2173-2189. [PMID: 39357509 DOI: 10.1016/j.cmet.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Readily available nutrient-rich foods exploit our inherent drive to overconsume, creating an environment of overnutrition. This transformative setting has led to persistent health issues, such as obesity and metabolic syndrome. The development of glucagon-like peptide-1 receptor (GLP-1R) agonists reveals our ability to pharmacologically manage weight and address metabolic conditions. Obesity is directly linked to chronic low-grade inflammation, connecting our metabolic environment to neurodegenerative diseases. GLP-1R agonism in curbing obesity, achieved by impacting appetite and addressing associated metabolic defects, is revealing additional benefits extending beyond weight loss. Whether GLP-1R agonism directly impacts brain health or does so indirectly through improved metabolic health remains to be elucidated. In exploring the intricate connection between obesity and neurological conditions, recent literature suggests that GLP-1R agonism may have the capacity to shape the neurovascular landscape. Thus, GLP-1R agonism emerges as a promising strategy for addressing the complex interplay between metabolic health and cognitive well-being.
Collapse
Affiliation(s)
- Bandy Chen
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Claudia Horvath-Diano
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - María José Ortuño
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Ania M Jastreboff
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Marc Schneeberger
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Riemma MA, Mele E, Donniacuo M, Telesca M, Bellocchio G, Castaldo G, Rossi F, De Angelis A, Cappetta D, Urbanek K, Berrino L. Glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors, anti-diabetic drugs in heart failure and cognitive impairment: potential mechanisms of the protective effects. Front Pharmacol 2024; 15:1422740. [PMID: 38948473 PMCID: PMC11212466 DOI: 10.3389/fphar.2024.1422740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Heart failure and cognitive impairment emerge as public health problems that need to be addressed due to the aging global population. The conditions that often coexist are strongly related to advancing age and multimorbidity. Epidemiological evidence indicates that cardiovascular disease and neurodegenerative processes shares similar aspects, in term of prevalence, age distribution, and mortality. Type 2 diabetes increasingly represents a risk factor associated not only to cardiometabolic pathologies but also to neurological conditions. The pathophysiological features of type 2 diabetes and its metabolic complications (hyperglycemia, hyperinsulinemia, and insulin resistance) play a crucial role in the development and progression of both heart failure and cognitive dysfunction. This connection has opened to a potential new strategy, in which new classes of anti-diabetic medications, such as glucagon-like peptide-1 receptor (GLP-1R) agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors, are able to reduce the overall risk of cardiovascular events and neuronal damage, showing additional protective effects beyond glycemic control. The pleiotropic effects of GLP-1R agonists and SGLT2 inhibitors have been extensively investigated. They exert direct and indirect cardioprotective and neuroprotective actions, by reducing inflammation, oxidative stress, ions overload, and restoring insulin signaling. Nonetheless, the specificity of pathways and their contribution has not been fully elucidated, and this underlines the urgency for more comprehensive research.
Collapse
Affiliation(s)
- Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Donniacuo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Donato Cappetta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
6
|
Baylan U, Baidoshvili A, Simsek S, Schalkwijk CG, Niessen HWM, Krijnen PAJ. Increased accumulation of the advanced glycation endproduct Ne(carboxymethyl) lysine in the intramyocardial vasculature in patients with epicarditis. Int J Exp Pathol 2024; 105:48-51. [PMID: 38062984 PMCID: PMC10951421 DOI: 10.1111/iep.12499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 03/21/2024] Open
Abstract
Advanced glycation end-products (AGEs) are implicated in the pathogenesis of vascular disease. In previous studies we have found increased deposition of N(e)-(carboxymethyl)lysine (CML) in intramyocardial vasculature in the heart in acute myocardial infarction and myocarditis. It is known that the process of inflammation plays a role in the formation of AGEs. In this study we have explored the presence of CML (a major AGE) in the heart of patients with epicarditis using a monoclonal anti-CML antibody. Nine patients with epicarditis (n = 9) died and their hearts were used for this study, control were hearts from patients who died from conditions unrelated to heart disease and without signs of myocarditis or epicarditis CML deposition and complement were significantly increased in patients with epicarditis compared to control hearts. Thus epicarditis increases CML depositions in the intramyocardial vasculature.
Collapse
Affiliation(s)
- U Baylan
- Department of PathologyAmsterdam University Medical Centre (AUMC)AmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - A Baidoshvili
- Laboratory for Pathology East NetherlandsHengeloThe Netherlands
| | - S Simsek
- Department of Internal MedicineNorthwest ClinicsAlkmaarThe Netherlands
- Department of Internal MedicineAUMCAmsterdamThe Netherlands
| | - CG Schalkwijk
- Internal MedicineMaastricht University Medical CentreMaastrichtThe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)MaastrichtThe Netherlands
| | - HWM Niessen
- Department of PathologyAmsterdam University Medical Centre (AUMC)AmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - PAJ Krijnen
- Department of PathologyAmsterdam University Medical Centre (AUMC)AmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| |
Collapse
|
7
|
Abdel-Reheim MA, Zaafar D, El-Shoura EAM, Abdelaal N, Atwa AM, Bazeed SM, Mahmoud HM. Unlocking the miRNA-34a-5p/TGF-β and HMGB1/PI3K/Akt/mTOR crosstalk participate in the enhanced cardiac protection of liraglutide against isoproterenol-induced acute myocardial injury rat model. Int Immunopharmacol 2024; 127:111369. [PMID: 38101219 DOI: 10.1016/j.intimp.2023.111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Liraglutide (LIRA), a drug used to treat type 2 diabetes mellitus that belongs to the glucagon-like peptide-1 class, has recently drawn attention for its potential cardioprotective properties because of its anti-oxidative and anti-inflammatory properties. This current investigation was designed to assess the impact of LIRA on myocardial injury induced by isoproterenol (ISO). The experiment included 24 male Wistar rats in total, and they were divided into four groups: Control, LIRA (200 µg/kg/12 hrs., S.C.), ISO (85 mg/kg, S.C.), and ISO + LIRA. To assess the results, various biochemical and histopathological analyses were carried out. The findings showed elevated serum enzyme levels, a sign of cardiac injury. ISO-treated rats showed an upregulation of oxidative stress and inflammatory biomarkers like MDA, MPO, nitrites, NADPH oxidase, TNF-α, IL-1β, IL-6, 8-Hydroxyguanosine (8-OHdG), and TGF-β, as well as altered gene expressions like TLR-1 and miRNA-34a-5p. According to western blotting analysis, protein levels of AKT, PI3K, and mTOR were obviously enhanced. Additionally, ISO-treated samples showed altered tissue morphology, elevated caspase 3, and decreased Bcl2 concentrations. The levels of these dysregulated parameters were significantly normalized by LIRA therapy, demonstrating its cardioprotective function against ISO-induced myocardial injury in rats. This protective mechanism was linked to anti-inflammatory properties, redox balance restoration, and modulation of the miRNA-34a-5p/TGF-β pathway.
Collapse
Affiliation(s)
- Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62514, Egypt
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Ehab A M El-Shoura
- Clinical Pharmacy Department, Al-Azhar University, Assiut branch, Assiut 71524, Egypt.
| | - Nashwa Abdelaal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Shefaa M Bazeed
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Heba M Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62514, Egypt
| |
Collapse
|
8
|
Gupta P, Ekbbal R. Liraglutide Improves Diabetic Cardiomyopathy by Downregulation of Cardiac Inflammatory and Apoptosis Markers. Curr Drug Res Rev 2024; 16:289-299. [PMID: 37966282 DOI: 10.2174/0125899775243787231103075804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy is one of the leading causes of mortality for people with diabetes worldwide. The majority of the formalistic alterations in the heart associated with diabetic cardiomyopathy have been found to be primarily caused by the ongoing oxidative stress brought on by hyperglycemia, which leads to the dysfunctional reactions of apoptosis and inflammation. Liraglutide, a long-acting counterpart of glucagon-like peptide-1, has been demonstrated to have a number of therapeutic applications in medicine and other biological processes. METHODS The PubMed database was searched using the terms liraglutide, DCM, and all associated inflammatory markers. RESULTS There has been a lot of research on liraglutide's potential to protect the heart from cardiomyopathy brought on by diabetes. Liraglutide's therapeutic actions as an antioxidant, antihyperglycemic, anti-apoptotic, and anti-inflammatory medicine may help to lessen diabetic cardiomyopathy. CONCLUSION The most recent studies on the effects of liraglutide therapy on DCM are presented in this review, along with an explanation of the underlying mechanisms.
Collapse
Affiliation(s)
- Polly Gupta
- Department of Pharmaceutical Sciences, IIMT College of Medical Sciences (Pharmacy), IIMT University, Meerut, UP, India
| | - Rustam Ekbbal
- Department of Pharmacology, IIMT College of Medical Sciences (Pharmacy), IIMT University, Meerut, UP, India
| |
Collapse
|
9
|
Atef MM, Abou Hashish NA, Hafez YM, Selim AF, Ibrahim HA, Eltabaa EF, Rizk FH, Shalaby AM, Ezzat N, Alabiad MA, Elshamy AM. The potential protective effect of liraglutide on valproic acid induced liver injury in rats: Targeting HMGB1/RAGE axis and RIPK3/MLKL mediated necroptosis. Cell Biochem Funct 2023; 41:1209-1219. [PMID: 37771193 DOI: 10.1002/cbf.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023]
Abstract
Valproic acid (VPA) is a commonly used drug for management of epilepsy. Prolonged VPA administration increases the risk of hepatotoxicity. Liraglutide is a glucagon-like peptide 1 receptor (GLP-1R) agonist that act as a novel antidiabetic drug with broad-spectrum anti-inflammatory and antioxidant effects. This study tested the protective effect of liraglutide against VPA-induced hepatotoxicity elucidating the possible underlying molecular mechanisms. Forty adult male rats were allocated in to four equally sized groups; Group I (control group) received oral distilled water and subcutaneous normal saline for 2 weeks followed by subcutaneous normal saline only for 2 weeks. Group II (liraglutide group) received subcutaneous liraglutide dissolved in normal saline daily for 4 weeks. Group III (valproic acid-treated group) received sodium valproate dissolved in distilled water for 2 weeks. Group IV (Combined valproic acid & liraglutide treated group) received valproic acid plus liraglutide daily for 2 weeks which was continued for additional 2 weeks after valproic acid administration. The hepatic index was calculated. Serum AST, ALT, GGT, and ALP activities were estimated. Hepatic tissue homogenate MDA, GSH, SOD, HMGB1, MAPK, RIPK1, and RIPK3 levels were evaluated using ELISA. However, hepatic RAGE and MLKL messenger RNA expression levels using the QRT-PCR technique. Hepatic NF-κB and TNF-α were detected immunohistochemically. Results proved that liraglutide coadministration significantly decreased liver enzymes, MDA, HMGB1, MAPK, RIPK1 RIPK3, RAGE, and MLKL with concomitant increased GSH and SOD in comparison to the correspondent values in VPA-hepatotoxicity group. Conclusions: Liraglutide's protective effects against VPA-induced hepatotoxicity are triggered by ameliorating oxidative stress, inflammation, and necroptosis.
Collapse
Affiliation(s)
- Marwa Mohamed Atef
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Yasser Mostafa Hafez
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed Fawzy Selim
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hoda A Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman Fawzy Eltabaa
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fatma H Rizk
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Nadia Ezzat
- Department of Toxicology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Ali Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Tanta, Egypt
| | - Amira M Elshamy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
10
|
Wang D, Li J, Luo G, Zhou J, Wang N, Wang S, Zhao R, Cao X, Ma Y, Liu G, Hao L. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol 2023; 64:102781. [PMID: 37321060 PMCID: PMC10363438 DOI: 10.1016/j.redox.2023.102781] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic vascular complications can affect both microvascular and macrovascular. Diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic cardiomyopathy, are believed to be caused by oxidative stress. The Nox family of NADPH oxidases is a significant source of reactive oxygen species and plays a crucial role in regulating redox signaling, particularly in response to high glucose and diabetes mellitus. This review aims to provide an overview of the current knowledge about the role of Nox4 and its regulatory mechanisms in diabetic microangiopathies. Especially, the latest novel advances in the upregulation of Nox4 that aggravate various cell types within diabetic kidney disease will be highlighted. Interestingly, this review also presents the mechanisms by which Nox4 regulates diabetic microangiopathy from novel perspectives such as epigenetics. Besides, we emphasize Nox4 as a therapeutic target for treating microvascular complications of diabetes and summarize drugs, inhibitors, and dietary components targeting Nox4 as important therapeutic measures in preventing and treating diabetic microangiopathy. Additionally, this review also sums up the evidence related to Nox4 and diabetic macroangiopathy.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Jiaying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Juan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050000, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China.
| |
Collapse
|
11
|
Balogh DB, Wagner LJ, Fekete A. An Overview of the Cardioprotective Effects of Novel Antidiabetic Classes: Focus on Inflammation, Oxidative Stress, and Fibrosis. Int J Mol Sci 2023; 24:7789. [PMID: 37175496 PMCID: PMC10177821 DOI: 10.3390/ijms24097789] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolic diseases, particularly diabetes mellitus (DM), are significant global public health concerns. Despite the widespread use of standard-of-care therapies, cardiovascular disease (CVD) remains the leading cause of death among diabetic patients. Early and evidence-based interventions to reduce CVD are urgently needed. Large clinical trials have recently shown that sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) ameliorate adverse cardiorenal outcomes in patients with type 2 DM. These quite unexpected positive results represent a paradigm shift in type 2 DM management, from the sole importance of glycemic control to the simultaneous improvement of cardiovascular outcomes. Moreover, SGLT2i is also found to be cardio- and nephroprotective in non-diabetic patients. Several mechanisms, which may be potentially independent or at least separate from the reduction in blood glucose levels, have already been identified behind the beneficial effect of these drugs. However, there is still much to be understood regarding the exact pathomechanisms. This review provides an overview of the current literature and sheds light on the modes of action of novel antidiabetic drugs, focusing on inflammation, oxidative stress, and fibrosis.
Collapse
Affiliation(s)
- Dora Bianka Balogh
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary
| | - Laszlo Jozsef Wagner
- Department of Surgery, Transplantation, and Gastroenterology, Semmelweis University, 1085 Budapest, Hungary
| | - Andrea Fekete
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary
| |
Collapse
|
12
|
Sonmez MI, Shahzadi A, Kose C, Sonmez H, Ozyazgan S, Akkan AG. Effect of sulfasalazine on endothelium-dependent vascular response by the activation of Nrf2 signalling pathway. Front Pharmacol 2022; 13:979300. [PMID: 36353481 PMCID: PMC9639785 DOI: 10.3389/fphar.2022.979300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Diabetes mellitus leads to endothelial dysfunction and accumulation of oxygen radicals. Sulfasalazine-induced Nrf2 activation reduces oxidative stress in vessels. Thus, in the present study, we investigated the effects of sulfasalazine on endothelial dysfunction induced by high glucose. We also ascribed the underlying mechanism involved in glucose-induced endothelial dysfunction. Methods: For this experiment we used 80 Wistar Albino rats thoracic aorta to calculate the dose response curve of noradrenaline and acetylcholine. Vessels were incubated in normal and high glucose for 2 h. To investigate glucose and sulfasalazine effects the vessels of the high glucose group were pre-treated with sulfasalazine (300 mM), JNK inhibitor (SP600125), and ERK inhibitor (U0126) for 30 min. The dose response curve was calculated through organ bath. The eNOS, TAS, TOS, and HO-1 levels were estimated by commercially available ELISA kits. Results: In the high glucose group, the Emax for contraction was significantly higher (p < 0.001), and Emax for relaxation was lower than that of control. These functional changes were parallel with the low levels of eNOS (p < 0.05). High glucose vessel treated with sulfasalazine showed low Emax value for contraction (p < 0.001) however, the Emax for relaxation was significantly high (p < 0.001) when compared to high glucose group. In the JNK group, Emax for contraction and relaxation was inhibited (p < 0.001) compared to sulfasalazine treated vessels. HO—1 enzyme levels were significantly low (p < 0.01) with sulfasalazine but higher with ERK inhibitor (p < 0.05). Conclusion: High glucose induced endothelial dysfunction and sulfasalazine reduced damage in high glucose vessels by activating eNOS, antioxidant effect through HO-1 enzymes and particularly inducing Nrf2 via the ERK and JNK pathways.
Collapse
Affiliation(s)
- Muhammed Ikbal Sonmez
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- *Correspondence: Muhammed Ikbal Sonmez,
| | - Andleeb Shahzadi
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Cagla Kose
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of Medical Pharmacology, Medical Faculty, Halic University, Istanbul, Turkey
| | - Haktan Sonmez
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sibel Ozyazgan
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Gokhan Akkan
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of Medical Pharmacology, Medical Faculty, Bezmialem Vakif University Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Theofilis P, Vordoni A, Kalaitzidis RG. Oxidative Stress Management in Cardiorenal Diseases: Focus on Novel Antidiabetic Agents, Finerenone, and Melatonin. Life (Basel) 2022; 12:1663. [PMID: 36295098 PMCID: PMC9605243 DOI: 10.3390/life12101663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is characterized by excessive production of reactive oxygen species together with exhausted antioxidant defenses. This constitutes a main pathophysiologic process that is implicated in cardiovascular and renal diseases. In particular, enhanced oxidative stress may lead to low-density lipoprotein accumulation and oxidation, endothelial cell activation, adhesion molecule overexpression, macrophage activation, and foam cell formation, promoting the development and progression of atherosclerosis. The deleterious kidney effects of oxidative stress are numerous, including podocytopathy, mesangial enlargement, renal hypertrophy, tubulointerstitial fibrosis, and glomerulosclerosis. The prominent role of oxidative mechanisms in cardiorenal diseases may be counteracted by recently developed pharmacotherapies such as novel antidiabetic agents and finerenone. These agents have demonstrated significant antioxidant activity in preclinical and clinical studies. Moreover, the use of melatonin as a treatment in this field has been experimentally investigated, with large-scale clinical studies being awaited. Finally, clinical implications and future directions in this field are presented.
Collapse
Affiliation(s)
| | | | - Rigas G. Kalaitzidis
- Center for Nephrology “G. Papadakis”, General Hospital of Nikaia-Piraeus Agios Panteleimon, 18454 Piraeus, Greece
| |
Collapse
|