1
|
George AT, Rubin DT. Artificial Intelligence in Inflammatory Bowel Disease. Gastrointest Endosc Clin N Am 2025; 35:367-387. [PMID: 40021234 DOI: 10.1016/j.giec.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Artificial intelligence (AI) is being increasingly studied and implemented in gastroenterology. In inflammatory bowel disease (IBD), numerous AI models are being developed to assist with IBD diagnosis, standardization of endoscopic and radiologic disease activity, and predicting outcomes. Further prospective, multicenter studies representing diverse populations and novel applications are needed prior to routine implementation in clinical practice and expected improved outcomes for clinicians and patients.
Collapse
Affiliation(s)
- Alvin T George
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - David T Rubin
- Department of Medicine, Inflammatory Bowel Disease Center, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Testoni SGG, Albertini Petroni G, Annunziata ML, Dell’Anna G, Puricelli M, Delogu C, Annese V. Artificial Intelligence in Inflammatory Bowel Disease Endoscopy. Diagnostics (Basel) 2025; 15:905. [PMID: 40218255 PMCID: PMC11988936 DOI: 10.3390/diagnostics15070905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/19/2025] [Indexed: 04/14/2025] Open
Abstract
Inflammatory bowel diseases (IBDs), comprising Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases of the gastrointestinal (GI) tract with still-elusive etiopathogeneses and an increasing prevalence worldwide. Despite the growing availability of more advanced therapies in the last two decades, there are still a number of unmet needs. For example, the achievement of mucosal healing has been widely demonstrated as a prognostic marker for better outcomes and a reduced risk of dysplasia and cancer; however, the accuracy of endoscopy is crucial for both this aim and the precise and reproducible evaluation of endoscopic activity and the detection of dysplasia. Artificial intelligence (AI) has drastically altered the field of GI studies and is being extensively applied to medical imaging. The utilization of deep learning and pattern recognition can help the operator optimize image classification and lesion segmentation, detect early mucosal abnormalities, and eventually reveal and uncover novel biomarkers with biologic and prognostic value. The role of AI in endoscopy-and potentially also in histology and imaging in the context of IBD-is still at its initial stages but shows promising characteristics that could lead to a better understanding of the complexity and heterogeneity of IBDs, with potential improvements in patient care and outcomes. The initial experience with AI in IBDs has shown its potential value in the differentiation of UC and CD when there is no ileal involvement, reducing the significant amount of time it takes to review videos of capsule endoscopy and improving the inter- and intra-observer variability in endoscopy reports and scoring. In addition, these initial experiences revealed the ability to predict the histologic score index and the presence of dysplasia. Thus, the purpose of this review was to summarize recent advances regarding the application of AI in IBD endoscopy as there is, indeed, increasing evidence suggesting that the integration of AI-based clinical tools will play a crucial role in paving the road to precision medicine in IBDs.
Collapse
Affiliation(s)
- Sabrina Gloria Giulia Testoni
- Unit of Gastroenterology and Digestive Endoscopy, Scientific Institute for Research, Hospitalization and Healthcare Policlinico San Donato, Vita-Salute San Raffaele University, San Donato Milanese, 20097 Milan, Italy
- Unit of Gastroenterology and Digestive Endoscopy, Scientific Institute for Research, Hospitalization and Healthcare Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Guglielmo Albertini Petroni
- Unit of Gastroenterology and Digestive Endoscopy, Scientific Institute for Research, Hospitalization and Healthcare Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Maria Laura Annunziata
- Unit of Gastroenterology and Digestive Endoscopy, Scientific Institute for Research, Hospitalization and Healthcare Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Giuseppe Dell’Anna
- Unit of Gastroenterology and Digestive Endoscopy, Scientific Institute for Research, Hospitalization and Healthcare Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Michele Puricelli
- School of Specialization in Digestive System Diseases, Faculty of Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Delogu
- School of Specialization in Digestive System Diseases, Faculty of Medicine, University of Pavia, 27100 Pavia, Italy
| | - Vito Annese
- Unit of Gastroenterology and Digestive Endoscopy, Scientific Institute for Research, Hospitalization and Healthcare Policlinico San Donato, Vita-Salute San Raffaele University, San Donato Milanese, 20097 Milan, Italy
- Unit of Gastroenterology and Digestive Endoscopy, Scientific Institute for Research, Hospitalization and Healthcare Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| |
Collapse
|
3
|
Grinberg N, Whitefield S, Kleinman S, Ianculovici C, Wasserman G, Peleg O. Assessing the performance of an artificial intelligence based chatbot in the differential diagnosis of oral mucosal lesions: clinical validation study. Clin Oral Investig 2025; 29:188. [PMID: 40097790 DOI: 10.1007/s00784-025-06268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVES Artificial intelligence (AI) is becoming more popular in medicine. The current study aims to investigate, primarily, if an AI-based chatbot, such as ChatGPT, could be a valid tool for assisting in establishing a differential diagnosis of oral mucosal lesions. METHODS Data was gathered from patients who were referred to our clinic for an oral mucosal biopsy by one oral medicine specialist. Clinical description, differential diagnoses, and final histopathologic diagnoses were retrospectively extracted from patient records. The lesion description was inputted into ChatGPT version 4.0 under a uniform script to generate three differential diagnoses. ChatGPT and an oral medicine specialist's differential diagnosis were compared to the final histopathologic diagnosis. RESULTS 100 oral soft tissue lesions were evaluated. A statistically significant correlation was found between the ability of the Chatbot and the Specialist to accurately diagnose the cases (P < 0.001). ChatGPT demonstrated remarkable sensitivity for diagnosing urgent cases, as none of the malignant lesions were missed by the chatbot. At the same time, the specificity of the specialist was higher in cases of malignant lesion diagnosis (p < 0.05). The chatbot performance was reliable in two different events (p < 0.01). CONCLUSION ChatGPT-4 has shown the ability to pinpoint suspicious malignant lesions and suggest an adequate differential diagnosis for soft tissue lesions, in a consistent and repetitive manner. CLINICAL RELEVANCE This study serves as a primary insight into the role of AI chatbots, as assisting tools in oral medicine and assesses their clinical capabilities.
Collapse
Affiliation(s)
- Nadav Grinberg
- Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, 64239, Tel Aviv, Israel.
- , Mevasseret Zion, Israel.
| | - Sara Whitefield
- Oral Medicine Unit, Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, 64239, Tel Aviv, Israel
| | - Shlomi Kleinman
- Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, 64239, Tel Aviv, Israel
| | - Clariel Ianculovici
- Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, 64239, Tel Aviv, Israel
| | - Gilad Wasserman
- Oral Medicine Unit, Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, 64239, Tel Aviv, Israel
| | - Oren Peleg
- Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, 64239, Tel Aviv, Israel
| |
Collapse
|
4
|
Maeda Y, Kudo SE, Kuroki T, Iacucci M. Automated Endoscopic Diagnosis in IBD: The Emerging Role of Artificial Intelligence. Gastrointest Endosc Clin N Am 2025; 35:213-233. [PMID: 39510689 DOI: 10.1016/j.giec.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The emerging role of artificial intelligence (AI) in automated endoscopic diagnosis represents a significant advancement in managing inflammatory bowel disease (IBD). AI technologies are increasingly being applied to endoscopic imaging to enhance the diagnosis, prediction of severity, and progression of IBD and dysplasia-associated colitis surveillance. These AI-assisted endoscopy aim to improve diagnostic accuracy, reduce variability of endoscopy imaging interpretations, and assist clinicians in decision-making processes. By leveraging AI, healthcare providers have the potential to offer more personalized and effective treatments, ultimately improving patient outcomes in IBD care.
Collapse
Affiliation(s)
- Yasuharu Maeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan; APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork T12 YT20, Ireland.
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Takanori Kuroki
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
5
|
Mota J, Almeida MJ, Martins M, Mendes F, Cardoso P, Afonso J, Ribeiro T, Ferreira J, Fonseca F, Limbert M, Lopes S, Macedo G, Castro Poças F, Mascarenhas M. Artificial Intelligence in Coloproctology: A Review of Emerging Technologies and Clinical Applications. J Clin Med 2024; 13:5842. [PMID: 39407902 PMCID: PMC11477032 DOI: 10.3390/jcm13195842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Artificial intelligence (AI) has emerged as a transformative tool across several specialties, namely gastroenterology, where it has the potential to optimize both diagnosis and treatment as well as enhance patient care. Coloproctology, due to its highly prevalent pathologies and tremendous potential to cause significant mortality and morbidity, has drawn a lot of attention regarding AI applications. In fact, its application has yielded impressive outcomes in various domains, colonoscopy being one prominent example, where it aids in the detection of polyps and early signs of colorectal cancer with high accuracy and efficiency. With a less explored path but equivalent promise, AI-powered capsule endoscopy ensures accurate and time-efficient video readings, already detecting a wide spectrum of anomalies. High-resolution anoscopy is an area that has been growing in interest in recent years, with efforts being made to integrate AI. There are other areas, such as functional studies, that are currently in the early stages, but evidence is expected to emerge soon. According to the current state of research, AI is anticipated to empower gastroenterologists in the decision-making process, paving the way for a more precise approach to diagnosing and treating patients. This review aims to provide the state-of-the-art use of AI in coloproctology while also reflecting on future directions and perspectives.
Collapse
Affiliation(s)
- Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - João Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, 4200-065 Porto, Portugal;
- DigestAID—Digestive Artificial Intelligence Development, Rua Alfredo Allen n.° 455/461, 4200-135 Porto, Portugal
| | - Filipa Fonseca
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPO Lisboa), 1099-023 Lisboa, Portugal; (F.F.); (M.L.)
| | - Manuel Limbert
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPO Lisboa), 1099-023 Lisboa, Portugal; (F.F.); (M.L.)
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
| | - Susana Lopes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
- Faculty of Medicine, University of Porto, 4200-047 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-047 Porto, Portugal
| | - Fernando Castro Poças
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
- Department of Gastroenterology, Santo António University Hospital, 4099-001 Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
- Faculty of Medicine, University of Porto, 4200-047 Porto, Portugal
| |
Collapse
|
6
|
Syed S, Boland BS, Bourke LT, Chen LA, Churchill L, Dobes A, Greene A, Heller C, Jayson C, Kostiuk B, Moss A, Najdawi F, Plung L, Rioux JD, Rosen MJ, Torres J, Zulqarnain F, Satsangi J. Challenges in IBD Research 2024: Precision Medicine. Inflamm Bowel Dis 2024; 30:S39-S54. [PMID: 38778628 DOI: 10.1093/ibd/izae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/25/2024]
Abstract
Precision medicine is part of 5 focus areas of the Challenges in IBD Research 2024 research document, which also includes preclinical human IBD mechanisms, environmental triggers, novel technologies, and pragmatic clinical research. Building on Challenges in IBD Research 2019, the current Challenges aims to provide a comprehensive overview of current gaps in inflammatory bowel diseases (IBDs) research and deliver actionable approaches to address them with a focus on how these gaps can lead to advancements in interception, remission, and restoration for these diseases. The document is the result of multidisciplinary input from scientists, clinicians, patients, and funders, and represents a valuable resource for patient-centric research prioritization. In particular, the precision medicine section is focused on the main research gaps in elucidating how to bring the best care to the individual patient in IBD. Research gaps were identified in biomarker discovery and validation for predicting disease progression and choosing the most appropriate treatment for each patient. Other gaps were identified in making the best use of existing patient biosamples and clinical data, developing new technologies to analyze large datasets, and overcoming regulatory and payer hurdles to enable clinical use of biomarkers. To address these gaps, the Workgroup suggests focusing on thoroughly validating existing candidate biomarkers, using best-in-class data generation and analysis tools, and establishing cross-disciplinary teams to tackle regulatory hurdles as early as possible. Altogether, the precision medicine group recognizes the importance of bringing basic scientific biomarker discovery and translating it into the clinic to help improve the lives of IBD patients.
Collapse
Affiliation(s)
- Sana Syed
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
- Patient representative for Crohn's & Colitis Foundation, New York, NY, USA
| | - Brigid S Boland
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lauren T Bourke
- Precision Medicine Drug Development, Early Respiratory and Immunology, AstraZeneca, Boston, MA, USA
| | - Lea Ann Chen
- Division of Gastroenterology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Laurie Churchill
- Leona M. and Harry B. Helmsley Charitable Trust, New York, NY, USA
| | | | - Adam Greene
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | | | | | | | - Alan Moss
- Crohn's & Colitis Foundation, New York, NY, USA
| | | | - Lori Plung
- Patient representative for Crohn's & Colitis Foundation, New York, NY, USA
| | - John D Rioux
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Michael J Rosen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Hospital da Luz, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Fatima Zulqarnain
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Jack Satsangi
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Pal P, Pooja K, Nabi Z, Gupta R, Tandan M, Rao GV, Reddy N. Artificial intelligence in endoscopy related to inflammatory bowel disease: A systematic review. Indian J Gastroenterol 2024; 43:172-187. [PMID: 38418774 DOI: 10.1007/s12664-024-01531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND AND OBJECTIVES In spite of rapid growth of artificial intelligence (AI) in digestive endoscopy in lesion detection and characterization, the role of AI in inflammatory bowel disease (IBD) endoscopy is not clearly defined. We aimed at systematically reviewing the role of AI in IBD endoscopy and identifying future research areas. METHODS We searched the PubMed and Embase database using keywords ("artificial intelligence" OR "machine learning" OR "computer-aided" OR "convolutional neural network") AND ("inflammatory bowel disease" OR "ulcerative colitis" OR "Crohn's") AND ("endoscopy" or "colonoscopy" or "capsule endoscopy" or "device assisted enteroscopy") between 1975 and September 2023 and identified 62 original articles for detailed review. Review articles, consensus guidelines, case reports/series, editorials, letter to the editor, non-peer-reviewed pre-prints and conference abstracts were excluded. The quality of the included studies was assessed using the MI-CLAIM checklist. RESULTS The accuracy of AI models (25 studies) to assess ulcerative colitis (UC) endoscopic activity ranged between 86.54% and 94.5%. AI-assisted capsule endoscopy reading (12 studies) substantially reduced analyzable images and reading time with excellent accuracy (90.5% to 99.9%). AI-assisted analysis of colonoscopic images can help differentiate IBD from non-IBD, UC from non-UC and UC from Crohn's disease (CD) (three studies) with 72.1%, 98.3% and > 90% accuracy, respectively. AI models based on non-invasive clinical and radiologic parameters could predict endoscopic activity (three studies). AI-assisted virtual chromoendoscopy (four studies) could predict histologic remission and long-term outcomes. Computer-assisted detection (CADe) of dysplasia (two studies) is feasible along with AI-based differentiation of high from low-grade IBD neoplasia (79% accuracy). AI is effective in linking electronic medical record data (two studies) with colonoscopic videos to facilitate widespread machine learning. CONCLUSION AI-assisted IBD endoscopy has the potential to impact clinical management by automated detection and characterization of endoscopic lesions. Large, multi-center, prospective studies and commercially available IBD-specific endoscopic AI algorithms are warranted.
Collapse
Affiliation(s)
- Partha Pal
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India.
| | - Kanapuram Pooja
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India
| | - Zaheer Nabi
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India
| | - Rajesh Gupta
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India
| | - Manu Tandan
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India
| | - Guduru Venkat Rao
- Surgical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad 500 082, India
| | - Nageshwar Reddy
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India
| |
Collapse
|
8
|
Zhao G, Cheng W, Cai W, Zhang X, Liu J. Leveraging Interpretable Feature Representations for Advanced Differential Diagnosis in Computational Medicine. Bioengineering (Basel) 2023; 11:29. [PMID: 38247906 PMCID: PMC10813342 DOI: 10.3390/bioengineering11010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Diagnostic errors represent a critical issue in clinical diagnosis and treatment. In China, the rate of misdiagnosis in clinical diagnostics is approximately 27.8%. By comparison, in the United States, which boasts the most developed medical resources globally, the average rate of misdiagnosis is estimated to be 11.1%. It is estimated that annually, approximately 795,000 Americans die or suffer permanent disabilities due to diagnostic errors, a significant portion of which can be attributed to physicians' failure to make accurate clinical diagnoses based on patients' clinical presentations. Differential diagnosis, as an indispensable step in the clinical diagnostic process, plays a crucial role. Accurately excluding differential diagnoses that are similar to the patient's clinical manifestations is key to ensuring correct diagnosis and treatment. Most current research focuses on assigning accurate diagnoses for specific diseases, but studies providing reasonable differential diagnostic assistance to physicians are scarce. This study introduces a novel solution specifically designed for this scenario, employing machine learning techniques distinct from conventional approaches. We develop a differential diagnosis recommendation computation method for clinical evidence-based medicine, based on interpretable representations and a visualized computational workflow. This method allows for the utilization of historical data in modeling and recommends differential diagnoses to be considered alongside the primary diagnosis for clinicians. This is achieved by inputting the patient's clinical manifestations and presenting the analysis results through an intuitive visualization. It can assist less experienced doctors and those in areas with limited medical resources during the clinical diagnostic process. Researchers discuss the effective experimental results obtained from a subset of general medical records collected at Shengjing Hospital under the premise of ensuring data quality, security, and privacy. This discussion highlights the importance of addressing these issues for successful implementation of data-driven differential diagnosis recommendations in clinical practice. This study is of significant value to researchers and practitioners seeking to improve the efficiency and accuracy of differential diagnoses in clinical diagnostics using data analysis.
Collapse
Affiliation(s)
- Genghong Zhao
- School of Computer Science, Engineering Northeastern University, No.195 Chuangxin Road Hunnan District, Shenyang 110169, China;
- Neusoft Research of Intelligent Healthcare Technology, Co., Ltd., No.175-2 Chuangxin Road Hunnan District, Shenyang 110167, China;
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang 110042, China
| | - Wen Cheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Wei Cai
- Neusoft Research of Intelligent Healthcare Technology, Co., Ltd., No.175-2 Chuangxin Road Hunnan District, Shenyang 110167, China;
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang 110042, China
| | - Xia Zhang
- School of Computer Science, Engineering Northeastern University, No.195 Chuangxin Road Hunnan District, Shenyang 110169, China;
- Neusoft Research of Intelligent Healthcare Technology, Co., Ltd., No.175-2 Chuangxin Road Hunnan District, Shenyang 110167, China;
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang 110042, China
| | - Jiren Liu
- School of Computer Science, Engineering Northeastern University, No.195 Chuangxin Road Hunnan District, Shenyang 110169, China;
- Neusoft Corporation, No.2 Xinxiu Road Hunnan District, Shenyang 110179, China
| |
Collapse
|