1
|
Lai SY, Zhu XJ, Sun WD, Bi SZ, Zhang CY, Liu A, Li JH. Nicotinamide N-Methyltransferase (NNMT) and Liver Cancer: From Metabolic Networks to Therapeutic Targets. Biomolecules 2025; 15:719. [PMID: 40427612 PMCID: PMC12109476 DOI: 10.3390/biom15050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/04/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, remains a global health challenge with limited therapeutic options and high mortality rates. Despite advances in understanding its molecular pathogenesis, the role of metabolic reprogramming in HCC progression and therapy resistance demands further exploration. Nicotinamide N-methyltransferase (NNMT), a metabolic enzyme central to NAD+ and methionine cycles, has emerged as a critical regulator of tumorigenesis across cancers. However, its tissue-specific mechanisms in HCC-particularly in the context of viral hepatitis and methionine cycle dependency-remain understudied. This review systematically synthesizes current evidence on NNMT's dual role in HCC: (1) driving NAD+ depletion and homocysteine (Hcy) accumulation via metabolic dysregulation, (2) promoting malignant phenotypes (proliferation, invasion, metastasis, and drug resistance), and (3) serving as a prognostic biomarker and therapeutic target. We highlight how NNMT intersects with epigenetic modifications, immune evasion, and metabolic vulnerabilities unique to HCC. Additionally, we critically evaluate NNMT inhibitors, RNA-based therapies, and non-pharmacological strategies (e.g., exercise) as novel interventions. By bridging gaps between NNMT's molecular mechanisms and clinical relevance, this review provides a roadmap for advancing NNMT-targeted therapies and underscores the urgency of addressing challenges in biomarker validation, inhibitor specificity, and translational efficacy. Our work positions NNMT not only as a metabolic linchpin in HCC but also as a promising candidate for precision oncology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiang-Hua Li
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China; (S.-Y.L.); (X.-J.Z.); (W.-D.S.); (S.-Z.B.); (C.-Y.Z.); (A.L.)
| |
Collapse
|
2
|
Magar AG, Morya VK, Koh YH, Noh KC. Synergistic HDAC4/8 Inhibition Sensitizes Osteosarcoma to Doxorubicin via pAKT/RUNX2 Pathway Modulation. Int J Mol Sci 2025; 26:3574. [PMID: 40332124 PMCID: PMC12026469 DOI: 10.3390/ijms26083574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Osteosarcoma is a highly aggressive bone malignancy, particularly challenging in metastatic cases, with a 5-year survival rate remaining under 30%. Although doxorubicin (doxo) is a standard first-line chemotherapeutic agent, its clinical utility is often hindered by the development of drug resistance and associated systemic toxicity. Emerging evidence highlights the role of epigenetic alterations, particularly those involving histone deacetylases (HDACs), in promoting chemoresistance. In this context, the present study aimed to evaluate the therapeutic potential of combining doxo with the selective HDAC inhibitors, tasquinimod (Tas, targeting HDAC4) and PCI-34051 (PCI, targeting HDAC8), in SJSA-1 osteosarcoma cells. Utilizing both 2D and 3D in vitro models, the combination treatment (referred to as the T4 group) significantly reduced cell viability by 57.69% in 2D cultures and decreased spheroid volume by 35.19% in 3D models. The apoptotic response was markedly enhanced, with late apoptosis reaching 64.59% and necrosis at 32.07%, both surpassing the effects observed with doxo alone. Furthermore, wound healing assays demonstrated a 37.74% inhibition of migration, accompanied by a decreased expression of the matrix metalloproteinases MMP9 and MMP13. Mechanistically, the combination therapy led to the downregulation of protein kinase B (pAKT) and RUNX2, along with upregulation of apoptotic markers, including caspase 8, caspase 3, and cleaved caspase 3, indicating a disruption of key survival pathways. These findings suggest that dual HDAC inhibition with Tas and PCI can potentiate doxo efficacy by enhancing apoptosis, inhibiting proliferation, and reducing metastatic potential, thus offering a promising strategy to overcome chemoresistance in osteosarcoma. Further preclinical and clinical studies are required to validate these therapeutic benefits.
Collapse
Affiliation(s)
- Anuja Gajanan Magar
- School of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea
| | - Vivek Kumar Morya
- School of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea
| | - Young-Ho Koh
- Ilsong Institute of Life Science, Hallym University, Seoul-si 14068, Republic of Korea
| | - Kyu-Cheol Noh
- School of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
- Hallym University Sacred Heart Hospital, Anyang-si 14068, Republic of Korea
| |
Collapse
|
3
|
Park J, Shin EJ, Kim TH, Yang JH, Ki SH, Kang KW, Kim KM. Exploring NNMT: from metabolic pathways to therapeutic targets. Arch Pharm Res 2024; 47:893-913. [PMID: 39604638 DOI: 10.1007/s12272-024-01519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Cellular metabolism-related epigenetic modulation plays a pivotal role in the maintenance of cellular homeostasis. Nicotinamide N-methyltransferase (NNMT) serves as a crucial link between cellular metabolism and epigenetics by catalyzing nicotinamide methylation using the universal methyl donor S-adenosyl-L-methionine. This direct connection bridges the methylation-mediated one-carbon metabolism with nicotinamide adenine dinucleotide levels. Numerous studies have revealed tissue-specific differences in NNMT expression and activity, indicating that its varied physiological and pathological roles depend on its distribution. In this review, we provide an overview of the NNMT involvement in various pathological conditions, including cancer, liver disease, obesity, diabetes, brain disease, pulmonary disease, cardiovascular disease, and kidney disease. By synthesizing this information, our article aims to enhance our understanding of the cellular mechanisms underlying NNMT biology related to diverse diseases and lay the molecular groundwork for developing therapeutic strategies for pharmacological interventions.
Collapse
Affiliation(s)
- Jeongwoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do, 58245, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea.
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
4
|
Tossetta G, Inversetti A. Special Issue "Ovarian Cancer: Advances on Pathophysiology and Therapies". Int J Mol Sci 2024; 25:5282. [PMID: 38791323 PMCID: PMC11121163 DOI: 10.3390/ijms25105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Ovarian cancer is a gynecologic cancer with a high mortality rate, and its incidence has increased significantly over the past 50 years [...].
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
5
|
Campagna R, Schiavoni V, Marchetti E, Salvolini E, Frontini A, Sampalmieri F, Bambini F, Meme’ L. In Vitro Study of the Proliferation of MG63 Cells Cultured on Five Different Titanium Surfaces. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2208. [PMID: 38793273 PMCID: PMC11122938 DOI: 10.3390/ma17102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
The use of dental implants for prosthetic rehabilitation in dentistry is based on the concept of osteointegration. This concept enables the clinical stability of the implants and a total absence of inflammatory tissue between the implant surface and the bone tissue. For this reason, it is essential to understand the role of the titanium surface in promoting and maintaining or not maintaining contact between the bone matrix and the surface of the titanium implant. MATERIALS AND METHODS Five types of titanium discs placed in contact with osteoblast cultures of osteosarcomas were studied. The materials had different roughness. Scanning electron microscopy (SEM) photos were taken before the in vitro culture to analyze the surfaces, and at the end of the culturing time, the different gene expressions of a broad pattern of proteins were evaluated to analyze the osteoblast response, as indicated in the scientific literature. RESULTS It was demonstrated that the responses of the osteoblasts were different in the five cultures in contact with the five titanium discs with different surfaces; in particular, the response in the production of some proteins was statistically significant. DISCUSSION The key role of titanium surfaces underlines how it is still possible to carry out increasingly accurate and targeted studies in the search for new surfaces capable of stimulating a better osteoblastic response and the long-term maintenance of osteointegration.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (R.C.); (V.S.); (F.S.); (L.M.)
| | - Valentina Schiavoni
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (R.C.); (V.S.); (F.S.); (L.M.)
| | - Enrico Marchetti
- Department of Life, Health, Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (R.C.); (V.S.); (F.S.); (L.M.)
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy;
| | - Francesco Sampalmieri
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (R.C.); (V.S.); (F.S.); (L.M.)
| | - Fabrizio Bambini
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (R.C.); (V.S.); (F.S.); (L.M.)
| | - Lucia Meme’
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (R.C.); (V.S.); (F.S.); (L.M.)
| |
Collapse
|