1
|
Zhao L, Svetec N, Begun DJ. De Novo Genes. Annu Rev Genet 2024; 58:211-232. [PMID: 39088850 DOI: 10.1146/annurev-genet-111523-102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Although the majority of annotated new genes in a given genome appear to have arisen from duplication-related mechanisms, recent studies have shown that genes can also originate de novo from ancestrally nongenic sequences. Investigating de novo-originated genes offers rich opportunities to understand the origin and functions of new genes, their regulatory mechanisms, and the associated evolutionary processes. Such studies have uncovered unexpected and intriguing facets of gene origination, offering novel perspectives on the complexity of the genome and gene evolution. In this review, we provide an overview of the research progress in this field, highlight recent advancements, identify key technical and conceptual challenges, and underscore critical questions that remain to be addressed.
Collapse
Affiliation(s)
- Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA; ,
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA; ,
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, California, USA;
| |
Collapse
|
2
|
Tanaka K, Barmina O, Thompson A, Massey JH, Kim BY, Suvorov A, Kopp A. Evolution and development of male-specific leg brushes in Drosophilidae. Dev Genes Evol 2022; 232:89-102. [PMID: 35939093 PMCID: PMC10375282 DOI: 10.1007/s00427-022-00694-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/12/2022] [Indexed: 01/30/2023]
Abstract
The origin, diversification, and secondary loss of sexually dimorphic characters are common in animal evolution. In some cases, structurally and functionally similar traits have evolved independently in multiple lineages. Prominent examples of such traits include the male-specific grasping structures that develop on the front legs of many dipteran insects. In this report, we describe the evolution and development of one of these structures, the male-specific "sex brush." The sex brush is composed of densely packed, irregularly arranged modified bristles and is found in several distantly related lineages in the family Drosophilidae. Phylogenetic analysis using 250 genes from over 200 species provides modest support for a single origin of the sex brush followed by many secondary losses; however, independent origins of the sex brush cannot be ruled out completely. We show that sex brushes develop in very similar ways in all brush-bearing lineages. The dense packing of brush hairs is explained by the specification of bristle precursor cells at a near-maximum density permitted by the lateral inhibition mechanism, as well as by the reduced size of the surrounding epithelial cells. In contrast to the female and the ancestral male condition, where bristles are arranged in stereotypical, precisely spaced rows, cell migration does not contribute appreciably to the formation of the sex brush. The complex phylogenetic history of the sex brush can make it a valuable model for investigating coevolution of sex-specific morphology and mating behavior.
Collapse
Affiliation(s)
- Kohtaro Tanaka
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, USA. .,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Olga Barmina
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, USA
| | - Ammon Thompson
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, USA
| | - Jonathan H Massey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Anton Suvorov
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, USA
| |
Collapse
|
3
|
Kopp A, Barmina O. Interspecific variation in sex-specific gustatory organs in Drosophila. J Comp Neurol 2022; 530:2439-2450. [PMID: 35603778 PMCID: PMC9339527 DOI: 10.1002/cne.25340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022]
Abstract
Drosophila males use leg gustatory bristles to discriminate between male and female cuticular pheromones as an important part of courtship behavior. In Drosophila melanogaster, several male-specific gustatory bristles are present on the anterior surface of the first tarsal segment of the prothoracic leg, in addition to a larger set of gustatory bristles found in both sexes. These bristles are thought to be specialized for pheromone detection. Here, we report the number and location of sex-specific gustatory bristles in 27 other Drosophila species. Although some species have a pattern similar to D. melanogaster, others lack anterior male-specific bristles but have many dorsal male-specific gustatory bristles instead. Some species have both anterior and dorsal male-specific bristles, while others lack sexual dimorphism entirely. In several distantly related species, the number of gustatory bristles is much greater in males than in females due to a male-specific transformation of ancestrally mechanosensory bristles to a chemosensory identity. This variation in the extent and pattern of sexual dimorphism may affect the formation and function of neuronal circuits that control Drosophila courtship and contribute to the evolution of mating behavior.
Collapse
Affiliation(s)
- Artyom Kopp
- Department of Evolution and Ecology, University of California Davis
| | - Olga Barmina
- Department of Evolution and Ecology, University of California Davis
| |
Collapse
|
4
|
Gao JJ, Barmina O, Thompson A, Kim BY, Suvorov A, Tanaka K, Watabe H, Toda MJ, Chen JM, Katoh TK, Kopp A. Secondary reversion to sexual monomorphism associated with tissue-specific loss of doublesex expression. Evolution 2022; 76:2089-2104. [PMID: 35841603 DOI: 10.1111/evo.14564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/22/2023]
Abstract
Animal evolution is characterized by frequent turnover of sexually dimorphic traits-new sex-specific characters are gained, and some ancestral sex-specific characters are lost, in many lineages. In insects, sexual differentiation is predominantly cell autonomous and depends on the expression of the doublesex (dsx) transcription factor. In most cases, cells that transcribe dsx have the potential to undergo sex-specific differentiation, while those that lack dsx expression do not. Consistent with this mode of development, comparative research has shown that the origin of new sex-specific traits can be associated with the origin of new spatial domains of dsx expression. In this report, we examine the opposite situation-a secondary loss of the sex comb, a male-specific grasping structure that develops on the front legs of some drosophilid species. We show that while the origin of the sex comb is linked to an evolutionary gain of dsx expression in the leg, sex comb loss in a newly identified species of Lordiphosa (Drosophilidae) is associated with a secondary loss of dsx expression. We discuss how the developmental control of sexual dimorphism affects the mechanisms by which sex-specific traits can evolve.
Collapse
Affiliation(s)
- Jian-Jun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, China.,State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan University, China
| | - Olga Barmina
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
| | - Ammon Thompson
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Anton Suvorov
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kohtaro Tanaka
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
| | - Hideaki Watabe
- The Hokkaido University Museum, Kita-10, Nishi-8, Kitaku, Sapporo, 060-0810, Japan
| | - Masanori J Toda
- The Hokkaido University Museum, Kita-10, Nishi-8, Kitaku, Sapporo, 060-0810, Japan
| | - Ji-Min Chen
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan University, China
| | - Takehiro K Katoh
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, China
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
5
|
Evolution of sexual development and sexual dimorphism in insects. Curr Opin Genet Dev 2021; 69:129-139. [PMID: 33848958 DOI: 10.1016/j.gde.2021.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022]
Abstract
Most animal species consist of two distinct sexes. At the morphological, physiological, and behavioral levels the differences between males and females are numerous and dramatic, yet at the genomic level they are often slight or absent. This disconnect is overcome because simple genetic differences or environmental signals are able to direct the sex-specific expression of a shared genome. A canonical picture of how this process works in insects emerged from decades of work on Drosophila. But recent years have seen an explosion of molecular-genetic and developmental work on a broad range of insects. Drawing these studies together, we describe the evolution of sexual dimorphism from a comparative perspective and argue that insect sex determination and differentiation systems are composites of rapidly evolving and highly conserved elements.
Collapse
|
6
|
Panara V, Budd GE, Janssen R. Phylogenetic analysis and embryonic expression of panarthropod Dmrt genes. Front Zool 2019; 16:23. [PMID: 31303887 PMCID: PMC6604209 DOI: 10.1186/s12983-019-0322-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023] Open
Abstract
Background One set of the developmentally important Doublesex and Male-abnormal-3 Related Transcription factors (Dmrt) is subject of intense research, because of their role in sex-determination and sexual differentiation. This likely non-monophyletic group of Dmrt genes is represented by the Drosophila melanogaster gene Doublesex (Dsx), the Caenorhabditis elegans Male-abnormal-3 (Mab-3) gene, and vertebrate Dmrt1 genes. However, other members of the Dmrt family are much less well studied, and in arthropods, including the model organism Drosophila melanogaster, data on these genes are virtually absent with respect to their embryonic expression and function. Results Here we investigate the complete set of Dmrt genes in members of all main groups of Arthropoda and a member of Onychophora, extending our data to Panarthropoda as a whole. We confirm the presence of at least four families of Dmrt genes (including Dsx-like genes) in Panarthropoda and study their expression profiles during embryogenesis. Our work shows that the expression patterns of Dmrt11E, Dmrt93B, and Dmrt99B orthologs are highly conserved among panarthropods. Embryonic expression of Dsx-like genes, however, is more derived, likely as a result of neo-functionalization after duplication. Conclusions Our data suggest deep homology of most of the panarthropod Dmrt genes with respect to their function that likely dates back to their last common ancestor. The function of Dsx and Dsx-like genes which are critical for sexual differentiation in animals, however, appears to be much less conserved. Electronic supplementary material The online version of this article (10.1186/s12983-019-0322-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Virginia Panara
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.,Present address: Department for Immunology, Genetic and Pathology, Rudbeckslaboratoriet, Dag Hammarskjölds väg 20, Uppsala, Sweden
| | - Graham E Budd
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
7
|
Al Sayad S, Yassin A. Quantifying the extent of morphological homoplasy: A phylogenetic analysis of 490 characters in Drosophila. Evol Lett 2019; 3:286-298. [PMID: 31171984 PMCID: PMC6546384 DOI: 10.1002/evl3.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022] Open
Abstract
Homoplasy is a fundamental phenomenon in evolutionary biology but an appraisal of its extent at the morphological level is still lacking. Here, we analyzed the evolution of 490 morphological characters conceptualized among 56 drosophilid species. We found that two thirds of morphological changes were homoplastic and that the level of homoplasy depended on the stage of development and the type of the organ, with the adult terminalia being the least homoplastic. In spite of its predominance at the character change level, homoplasy accounts for only ∼13% of between species similarities in pairwise comparisons. These results provide empirical insights on the limits of morphological changes and the frequency of recurrent evolution.
Collapse
Affiliation(s)
- Sinan Al Sayad
- Institut Systématique Evolution Biodiversité (ISYEB)Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE57 rue Cuvier, CP 50,75005ParisFrance
| | - Amir Yassin
- Institut Systématique Evolution Biodiversité (ISYEB)Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE57 rue Cuvier, CP 50,75005ParisFrance
| |
Collapse
|
8
|
Morita S, Ando T, Maeno A, Mizutani T, Mase M, Shigenobu S, Niimi T. Precise staging of beetle horn formation in Trypoxylus dichotomus reveals the pleiotropic roles of doublesex depending on the spatiotemporal developmental contexts. PLoS Genet 2019; 15:e1008063. [PMID: 30969957 PMCID: PMC6457530 DOI: 10.1371/journal.pgen.1008063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/03/2019] [Indexed: 11/19/2022] Open
Abstract
Many scarab beetles have sexually dimorphic exaggerated horns that are an evolutionary novelty. Since the shape, number, size, and location of horns are highly diverged within Scarabaeidae, beetle horns are an attractive model for studying the evolution of sexually dimorphic and novel traits. In beetles including the Japanese rhinoceros beetle Trypoxylus dichotomus, the sex differentiation gene doublesex (dsx) plays a crucial role in sexually dimorphic horn formation during larval-pupal development. However, knowledge of when and how dsx drives the gene regulatory network (GRN) for horn formation to form sexually dimorphic horns during development remains elusive. To address this issue, we identified a Trypoxylus-ortholog of the sex determination gene, transformer (tra), that regulates sex-specific splicing of the dsx pre-mRNA, and whose loss of function results in sex transformation. By knocking down tra function at multiple developmental timepoints during larval-pupal development, we estimated the onset when the sex-specific GRN for horn formation is driven. In addition, we also revealed that dsx regulates different aspects of morphogenetic activities during the prepupal and pupal developmental stages to form appropriate morphologies of pupal head and thoracic horn primordia as well as those of adult horns. Based on these findings, we discuss the evolutionary developmental background of sexually dimorphic trait growth in horned beetles. Beetles in the family Scarabaeidae have various types of horns on their heads and thoraces, and the shape, size, number, and location of these horns are highly diversified within the group. In addition, many scarab beetle horns are sexually dimorphic. The acquisition of these evolutionarily novel horns, and the mechanisms for the diversification of these structures is an interesting question. To address this question, we focused on the rhinoceros beetle Tripoxylus dichotomus. Here we identified the exact developmental timepoints during which the morphological sexual dimorphism of horn primordia appears, estimated the onset of the developmental program for sexually dimorphic horn formation driven by doublesex, and revealed that doublesex regulates different aspects of cell activities during horn formation depending on particular spatiotemporal developmental contexts. Our study provides insights into regulatory shifts in these mechanisms during the evolution of sexually dimorphic traits in horned beetles.
Collapse
Affiliation(s)
- Shinichi Morita
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Japan
| | - Toshiya Ando
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Japan
| | - Akiteru Maeno
- Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takeshi Mizutani
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Japan
| | - Mutsuki Mase
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Shuji Shigenobu
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Japan
- NIBB Core Research Facilities, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
- * E-mail:
| |
Collapse
|
9
|
Crumière AJJ, Khila A. Hox genes mediate the escalation of sexually antagonistic traits in water striders. Biol Lett 2019; 15:20180720. [PMID: 30958129 PMCID: PMC6405465 DOI: 10.1098/rsbl.2018.0720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/11/2019] [Indexed: 12/17/2022] Open
Abstract
Sexual conflict occurs when traits favoured in one sex impose fitness costs on the other sex. In the case of sexual conflict over mating rate, the sexes often undergo antagonistic coevolution and escalation of traits that enhance females' resistance to superfluous mating and traits that increase males' persistence. How this escalation in sexually antagonistic traits is established during ontogeny remains unclear. In the water strider Rhagovelia antilleana, male persistence traits consist of sex combs on the forelegs and multiple rows of spines and a thick femur in the rear legs. Female resistance traits consist of a prominent spike-like projection of the pronotum. RNAi knockdown against the Hox gene Sex Combs Reduced resulted in the reduction in both the sex comb in males and the pronotum projection in females. RNAi against the Hox gene Ultrabithorax resulted in the complete loss or reduction of all persistence traits in male rear legs. These results demonstrate that Hox genes can be involved in intra- and inter-locus sexual conflict and mediate escalation of sexually antagonistic traits.
Collapse
Affiliation(s)
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
10
|
Lai YT, Maeda C, Matsuno K. Drosophila flies high over the Asia-Pacific: Report on the Fourth Asia-Pacific Drosophila Research Conference. Genes Cells 2018; 23:512-516. [PMID: 29900631 DOI: 10.1111/gtc.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/08/2018] [Indexed: 10/14/2022]
Abstract
The Fourth Asia-Pacific Drosophila Research Conference (APDRC4) was held at the convention center of Osaka University, Osaka, Japan, on May 8-11, 2017. Derived from the Japanese Drosophila Research Conference, the APDRC visited its home for the first time since its launch in 2011 with APDRC1 in Taipei, followed by APDRC2 in Seoul and APDRC3 in Beijing. There were 344 participants from 18 countries, more than half of whom were from abroad (Data S1). Two keynote speakers, Drs. Henry Sun and Daisuke Yamamoto, who have had rich science careers, gave overviews of their research. In addition, 14 invited speakers who are highly regarded in their fields introduced their new findings. Thirty-four oral presenters, many of them young investigators and students, were selected from the general participants to report their exciting results. During the conference, many stimulating questions and discussions were shared. Furthermore, 176 posters were presented, which also inspired enthusiastic discussions. In addition to the scientific presentations, a mixer and banquet enabled further intercommunion among the researchers (Figure b, e). During the conference, it was decided that the next Asia-Pacific Drosophila Research Conference (APDRC5) would be in Pune, India, in 2020. Thus, APDRC4 successfully achieved its mission to facilitate Drosophila research in the Asia-Pacific region.
Collapse
Affiliation(s)
- Yi-Ting Lai
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Chinami Maeda
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Kenji Matsuno
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|