1
|
Cordero GA. Turtle Shell Kinesis Underscores Constraints and Opportunities in the Evolution of the Vertebrate Musculoskeletal System. Integr Org Biol 2023; 5:obad033. [PMID: 37840690 PMCID: PMC10576247 DOI: 10.1093/iob/obad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/04/2023] [Accepted: 09/03/2023] [Indexed: 10/17/2023] Open
Abstract
Species groups that feature traits with a low number of potentially variable (evolvable) character states are more likely to repeatedly evolve similar phenotypes, that is, convergence. To evaluate this phenomenon, this present paper addresses anatomical alterations in turtles that convergently evolved shell kinesis, for example, the movement of shell bones to better shield the head and extremities. Kinesis constitutes a major departure from the evolutionarily conserved shell of modern turtles, yet it has arisen independently at least 8 times. The hallmark signature of kinesis is the presence of shell bone articulations or "hinges," which arise via similar skeletal remodeling processes in species that do not share a recent common ancestor. Still, the internal biomechanical components that power kinesis may differ in such distantly related species. Complex diarthrodial joints and modified muscle connections expand the functional boundaries of the limb girdles and neck in a lineage-specific manner. Some lineages even exhibit mobility of thoracic and sacral vertebrae to facilitate shell closure. Depending on historical contingency and structural correlation, a myriad of anatomical alterations has yielded similar functional outcomes, that is, many-to-one mapping, during the convergent evolution of shell kinesis. The various iterations of this intricate phenotype illustrate the potential for the vertebrate musculoskeletal system to undergo evolutionary change, even when constraints are imposed by the development and structural complexity of a shelled body plan. Based on observations in turtles and comparisons to other vertebrates, a hypothetical framework that implicates functional interactions in the origination of novel musculoskeletal traits is presented.
Collapse
Affiliation(s)
- G A Cordero
- Department of Animal Biology, Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, 1740-016 Lisbon, Portugal
| |
Collapse
|
2
|
Cordero GA, Birk K, Ruane S, Dinkelacker SA, Janzen FJ. Effects of the egg incubation environment on turtle carapace development. Evol Dev 2023; 25:153-169. [PMID: 36373204 DOI: 10.1111/ede.12425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/24/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
Abstract
Developing organisms are often exposed to fluctuating environments that destabilize tissue-scale processes and induce abnormal phenotypes. This might be common in species that lay eggs in the external environment and with little parental care, such as many reptiles. In turtles, morphological development has provided striking examples of abnormal phenotypic patterns, though the influence of the environment remains unclear. To this end, we compared fluctuating asymmetry, as a proxy for developmental instability, in turtle hatchlings incubated in controlled laboratory and unstable natural conditions. Wild and laboratory hatchlings featured similar proportions of supernumerary scales (scutes) on the dorsal shell (carapace). Such abnormal scutes likely elevated shape asymmetry, which was highest in natural nests. Moreover, we tested the hypothesis that hot and dry environments cause abnormal scute formation by subjecting eggs to a range of hydric and thermal laboratory incubation regimes. Shape asymmetry was similar in hatchlings incubated at five constant temperatures (26-30°C). A hot (30°C) and severely Dry substrate yielded smaller hatchlings but scutes were not overtly affected. Our study suggests that changing nest environments contribute to fluctuating asymmetry in egg-laying reptiles, while clarifying the conditions at which turtle shell development remains buffered from the external environment.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA.,Department of Animal Biology, Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal
| | - Katie Birk
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Sarah Ruane
- Department of Biology, Framingham State University, Framingham, Massachusetts, USA
| | - Stephen A Dinkelacker
- Life Sciences Section, Negaunee Integrative Research Center, Field Museum, Chicago, Illinois, USA
| | - Fredric J Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
3
|
Cordero GA, Werneburg I. Domestication and the comparative embryology of birds. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:447-459. [PMID: 35604321 DOI: 10.1002/jez.b.23144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Studies of domesticated animals have greatly contributed to our understanding of avian embryology. Foundational questions in developmental biology were motivated by Aristotle's observations of chicken embryos. By the 19th century, the chicken embryo was at the center stage of developmental biology, but how closely does this model species mirror the ample taxonomic diversity that characterizes the avian tree of life? Here, we provide a brief overview of the taxonomic breadth of comparative embryological studies in birds. We particularly focused on staging tables and papers that attempted to document the timing of developmental transformations. We show that most of the current knowledge of avian embryology is based on Galliformes (chicken and quail) and Anseriformes (duck and goose). Nonetheless, data are available for some ecologically diverse avian subclades, including Struthioniformes (e.g., ostrich, emu) and Sphenisciformes (penguins). Thus far, there has only been a handful of descriptive embryological studies in the most speciose subclade of Aves, that is, the songbirds (Passeriniformes). Furthermore, we found that temporal variances for developmental events are generally uniform across a consensus chronological sequence for birds. Based on the available data, developmental trajectories for chicken and other model species appear to be highly similar. We discuss future avenues of research in comparative avian embryology in light of the currently available wealth of data on domesticated species and beyond.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), Eberhard Karls Universität Tübingen, Tübingen, Germany
- Department of Animal Biology, Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), Eberhard Karls Universität Tübingen, Tübingen, Germany
- Fachbereich Geowissenschaften, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Cordero GA, Vamberger M, Fritz U, Ihlow F. Skeletal repatterning enhances the protective capacity of the shell in African hinge-back tortoises (Kinixys). Anat Rec (Hoboken) 2022; 306:1558-1573. [PMID: 35582737 DOI: 10.1002/ar.24954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/06/2022]
Abstract
Changes in the structural association of skeletal traits are crucial to the evolution of novel forms and functions. In vertebrates, such rearrangements often occur gradually and may precede or coincide with the functional activation of skeletal traits. To illustrate this process, we examined the ontogeny of African hinge-back tortoises (Kinixys spp.). Kinixys species feature a moveable "hinge" on the dorsal shell (carapace) that enables shell closure (kinesis) when the hind limbs are withdrawn. This hinge, however, is absent in juveniles. Herein, we describe how this unusual phenotype arises via alterations in the tissue configuration and shape of the carapace. The ontogenetic repatterning of osseous and keratinous tissue coincided with shifts in morphological integration and the establishment of anterior (static) and posterior (kinetic) carapacial modules. Based on ex vivo skeletal movement and raw anatomy, we propose that Kinixys employs a "sliding hinge" shell-closing system that overcomes thoracic rigidity and enhances the protective capacity of the carapace. Universal properties of the vertebrate skeleton, such as plasticity, modularity, and secondary maturation processes, contributed to adaptive evolutionary change in Kinixys. We discuss a hypothetical model to explain the delayed emergence of skeletal traits and its relevance to the origins of novel form-to-function relationships.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Department of Geosciences, University of Tübingen, Tübingen, Germany
| | | | - Uwe Fritz
- Museum of Zoology, Senckenberg Dresden, Dresden, Germany
| | - Flora Ihlow
- Museum of Zoology, Senckenberg Dresden, Dresden, Germany
| |
Collapse
|
5
|
Jorgewich-Cohen G, Henrique RS, Dias PH, Sánchez-Villagra MR. The evolution of reproductive strategies in turtles. PeerJ 2022; 10:e13014. [PMID: 35295558 PMCID: PMC8919852 DOI: 10.7717/peerj.13014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/06/2022] [Indexed: 01/11/2023] Open
Abstract
Optimal egg size theory assumes that changes in the egg and clutch are driven by selection, resulting in adjustments for the largest possible production of offspring with the highest fitness. Evidence supports the idea that large-bodied turtles tend to produce larger clutches with small and round eggs, while smaller species produce small clutches with large and elongated eggs. Our goals were to investigate whether egg and clutch size follow the predictions of egg size theory, if there are convergent reproductive strategies, and identify ecological factors that influence clutch and egg traits across all clades of living turtles. Using phylogenetic methods, we tested the covariance among reproductive traits, if they are convergent among different turtle lineages, and which ecological factors influence these traits. We found that both egg shape and size inversely correlate with clutch size, although with different evolutionary rates, following the predictions of the egg size theory. We also present compelling evidence for convergence among different turtle clades, over at least two reproductive strategies. Furthermore, climatic zone is the only ecological predictor to influence both egg size and fecundity, while diet only influences egg size. We conclude that egg and clutch traits in Testudines evolved independently several times across non-directly related clades that converged to similar reproductive strategies. Egg and clutch characteristics follow the trade-offs predicted by egg size theory and are influenced by ecological factors. Climatic zone and diet play an important role in the distribution of reproductive characteristics among turtles.
Collapse
Affiliation(s)
| | - Rafael S. Henrique
- Laboratório de Anfíbios, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro Henrique Dias
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | |
Collapse
|
6
|
Ascarrunz E, Sánchez-Villagra MR. The macroevolutionary and developmental evolution of the turtle carapacial scutes. VERTEBRATE ZOOLOGY 2022. [DOI: 10.3897/vz.72.e76256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The scutes of the carapace of extant turtles exhibit common elements in a narrow range of topographical arrangements. The typical arrangement has remained constant since its origin in the clade Mesochelydia (Early Jurassic), after a period of apparent greater diversity in the Triassic. This contribution is a review of the development and evolutionary history of the scute patterns of the carapace, seen through the lens of recent developmental models. This yields insights on pattern variations in the fossil record. We reinterpret the “supracaudal” scute and propose that Proganochelys had five vertebral scutes. We discuss the relationship between supramarginal scutes and Turing processes, and we show how a simple change during embryogenesis could account for origin of the configuration of the caudal region of the carapace in mesochelydians. We also discuss the nature of the decrease in number of scutes over the course of evolution, and whether macroevolutionary trends can be discerned. We argue that turtles with complete loss of scutes (e.g., softshells) follow clade-specific macroevolutionary regimes, which are distinct from the majority of other turtles. Finally, we draw a parallel between the variation of scute patterns on the carapace of turtles and the scale patterns in the pileus region (roof of the head) of squamates. The size and numbers of scales in the pileus region can evolve over a wide range, but we recognized tentative evidence of convergence towards a typical configuration when the scales become larger and fewer. Thus, typical patterns could be a more general property of similar systems of integumentary appendages.
Collapse
|