1
|
Polsani N, Yung T, Thomas E, Phung-Rojas M, Gupta I, Denker J, Lau K, Feng X, Ibarra B, Hopyan S, Atit RP. Mesenchymal Wnts are required for morphogenetic movements of calvarial osteoblasts during apical expansion. Development 2024; 151:dev202596. [PMID: 38814743 PMCID: PMC11234264 DOI: 10.1242/dev.202596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Apical expansion of calvarial osteoblast progenitors from the cranial mesenchyme (CM) above the eye is integral to calvarial growth and enclosure of the brain. The cellular behaviors and signals underlying the morphogenetic process of calvarial expansion are unknown. Time-lapse light-sheet imaging of mouse embryos revealed calvarial progenitors intercalate in 3D in the CM above the eye, and exhibit protrusive and crawling activity more apically. CM cells express non-canonical Wnt/planar cell polarity (PCP) core components and calvarial osteoblasts are bidirectionally polarized. We found non-canonical ligand Wnt5a-/- mutants have less dynamic cell rearrangements and protrusive activity. Loss of CM-restricted Wntless (CM-Wls), a gene required for secretion of all Wnt ligands, led to diminished apical expansion of Osx+ calvarial osteoblasts in the frontal bone primordia in a non-cell autonomous manner without perturbing proliferation or survival. Calvarial osteoblast polarization, progressive cell elongation and enrichment for actin along the baso-apical axis were dependent on CM-Wnts. Thus, CM-Wnts regulate cellular behaviors during calvarial morphogenesis for efficient apical expansion of calvarial osteoblasts. These findings also offer potential insights into the etiologies of calvarial dysplasias.
Collapse
Affiliation(s)
- Nikaya Polsani
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Theodora Yung
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Evan Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Melissa Phung-Rojas
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Isha Gupta
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie Denker
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kimberly Lau
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaotian Feng
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Beatriz Ibarra
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Orthopedics, The Hospital for Sick Children and Departments of Molecular Genetics and Surgery, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Radhika P. Atit
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Dermatology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Genetics and Genome Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
2
|
Ollonen J, Khannoon ER, Macrì S, Vergilov V, Kuurne J, Saarikivi J, Soukainen A, Aalto IM, Werneburg I, Diaz RE, Di-Poï N. Dynamic evolutionary interplay between ontogenetic skull patterning and whole-head integration. Nat Ecol Evol 2024; 8:536-551. [PMID: 38200368 DOI: 10.1038/s41559-023-02295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The arrangement and morphology of the vertebrate skull reflect functional and ecological demands, making it a highly adaptable structure. However, the fundamental developmental and macroevolutionary mechanisms leading to different vertebrate skull phenotypes remain unclear. Here we exploit the morphological diversity of squamate reptiles to assess the developmental and evolutionary patterns of skull variation and covariation in the whole head. Our geometric morphometric analysis of a complex squamate ontogenetic dataset (209 specimens, 169 embryos, 44 species), covering stages from craniofacial primordia to fully ossified bones, reveals that morphological differences between snake and lizard skulls arose gradually through changes in spatial relationships (heterotopy) followed by alterations in developmental timing or rate (heterochrony). Along with dynamic spatiotemporal changes in the integration pattern of skull bone shape and topology with surrounding brain tissues and sensory organs, we identify a relatively higher phenotypic integration of the developing snake head compared with lizards. The eye, nasal cavity and Jacobson's organ are pivotal in skull morphogenesis, highlighting the importance of sensory rearrangements in snake evolution. Furthermore, our findings demonstrate the importance of early embryonic, ontogenetic and tissue interactions in shaping craniofacial evolution and ecological diversification in squamates, with implications for the nature of cranio-cerebral relations across vertebrates.
Collapse
Affiliation(s)
- Joni Ollonen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eraqi R Khannoon
- Biology Department, College of Science, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Simone Macrì
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Vladislav Vergilov
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jaakko Kuurne
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jarmo Saarikivi
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Arttu Soukainen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ida-Maria Aalto
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls Universität, Tübingen, Germany
- Fachbereich Geowissenschaften, Eberhard Karls Universität, Tübingen, Germany
| | - Raul E Diaz
- Department of Biological Sciences, California State University, Los Angeles, CA, USA
- Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Polsani N, Yung T, Thomas E, Phung-Rojas M, Gupta I, Denker J, Feng X, Ibarra B, Hopyan S, Atit RP. Mesenchymal Wnts are required for morphogenetic movements of calvarial osteoblasts during apical expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570300. [PMID: 38106005 PMCID: PMC10723314 DOI: 10.1101/2023.12.05.570300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Apical expansion of calvarial osteoblast progenitors from the cranial mesenchyme (CM) above the eye is integral for calvarial growth and enclosure of the brain. The cellular behaviors and signals underlying the morphogenetic process of calvarial expansion are unknown. During apical expansion, we found that mouse calvarial primordia have consistent cellular proliferation, density, and survival with complex tissue scale deformations, raising the possibility that morphogenetic movements underlie expansion. Time lapse light sheet imaging of mouse embryos revealed that calvarial progenitors intercalate in 3D to converge supraorbital arch mesenchyme mediolaterally and extend it apically. In contrast, progenitors located further apically exhibited protrusive and crawling activity. CM cells express non-canonical Wnt/Planar Cell Polarity (PCP) core components and calvarial osteoblasts are bidirectionally polarized. We found non-canonical ligand, Wnt5a-/- mutants have less dynamic cell rearrangements, protrusive activity, and a flattened head shape. Loss of cranial mesenchyme-restricted Wntless (CM-Wls), a gene required for secretion of all Wnt ligands, led to diminished apical expansion of OSX+ calvarial osteoblasts in the frontal bone primordia in a non-cell autonomous manner without perturbing proliferation or survival. Calvarial osteoblast polarization, progressive cell elongation and enrichment for actin cytoskeleton protein along the baso-apical axis were dependent on CM-Wnts. Thus, CM-Wnts regulate cellular behaviors during calvarial morphogenesis and provide tissue level cues for efficient apical expansion of calvarial osteoblasts. These findings also offer potential insights into the etiologies of calvarial dysplasias.
Collapse
Affiliation(s)
- Nikaya Polsani
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Theodora Yung
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Evan Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Melissa Phung-Rojas
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Isha Gupta
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie Denker
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaotian Feng
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Beatriz Ibarra
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Orthopedics, The Hospital for Sick Children and Departments of Molecular Genetics and Surgery, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Radhika P. Atit
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Dermatology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Genetics and Genome Sciences, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
4
|
Pitirri MK, Richtsmeier JT, Kawasaki M, Coupe AP, Perrine SM, Kawasaki K. Come together over me: Cells that form the dermatocranium and chondrocranium in mice. Anat Rec (Hoboken) 2023:10.1002/ar.25295. [PMID: 37497849 PMCID: PMC10818014 DOI: 10.1002/ar.25295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Most bone develops either by intramembranous ossification where bone forms within a soft connective tissue, or by endochondral ossification by way of a cartilage anlagen or model. Bones of the skull can form endochondrally or intramembranously or represent a combination of the two types of ossification. Contrary to the classical definition of intramembranous ossification, we have previously described a tight temporo-spatial relationship between cranial cartilages and dermal bone formation and proposed a mechanistic relationship between chondrocranial cartilage and dermal bone. Here, we further investigate this relationship through an analysis of how cells organize to form cranial cartilages and dermal bone. Using Wnt1-Cre2 and Mesp1-Cre transgenic mice, we determine the derivation of cells that comprise cranial cartilages from either cranial neural crest (CNC) or paraxial mesoderm (PM). We confirm a previously determined CNC-PM boundary that runs through the hypophyseal fenestra in the cartilaginous braincase floor and identify four additional CNC-PM boundaries in the chondrocranial lateral wall, including a boundary that runs along the basal and apical ends of the hypochiasmatic cartilage. Based on the knowledge that as osteoblasts differentiate from CNC- and PM-derived mesenchyme, the differentiating cells express the transcription factor genes RUNX2 and osterix (OSX), we created a new transgenic mouse line called R2Tom. R2Tom mice carry a tdTomato reporter gene joined with an evolutionarily well-conserved enhancer sequence of RUNX2. R2Tom mice crossed with Osx-GFP mice yield R2Tom;Osx-GFP double transgenic mice in which various stages of osteoblasts and their precursors are detected with different fluorescent reporters. We use the R2Tom;Osx-GFP mice, new data on the cell derivation of cranial cartilages, histology, immunohistochemistry, and detailed morphological observations combined with data from other investigators to summarize the differentiation of cranial mesenchyme as it forms condensations that become chondrocranial cartilages and associated dermal bones of the lateral cranial wall. These data advance our previous findings of a tendency of cranial cartilage and dermal bone development to vary jointly in a coordinated manner, promoting a role for cranial cartilages in intramembranous bone formation.
Collapse
Affiliation(s)
- M Kathleen Pitirri
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Joan T Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mizuho Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Abigail P Coupe
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Susan Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kazuhiko Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
5
|
Goswami A, Noirault E, Coombs EJ, Clavel J, Fabre AC, Halliday TJD, Churchill M, Curtis A, Watanabe A, Simmons NB, Beatty BL, Geisler JH, Fox DL, Felice RN. Developmental origin underlies evolutionary rate variation across the placental skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220083. [PMID: 37183904 PMCID: PMC10184245 DOI: 10.1098/rstb.2022.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The placental skull has evolved into myriad forms, from longirostrine whales to globular primates, and with a diverse array of appendages from antlers to tusks. This disparity has recently been studied from the perspective of the whole skull, but the skull is composed of numerous elements that have distinct developmental origins and varied functions. Here, we assess the evolution of the skull's major skeletal elements, decomposed into 17 individual regions. Using a high-dimensional morphometric approach for a dataset of 322 living and extinct eutherians (placental mammals and their stem relatives), we quantify patterns of variation and estimate phylogenetic, allometric and ecological signal across the skull. We further compare rates of evolution across ecological categories and ordinal-level clades and reconstruct rates of evolution along lineages and through time to assess whether developmental origin or function discriminate the evolutionary trajectories of individual cranial elements. Our results demonstrate distinct macroevolutionary patterns across cranial elements that reflect the ecological adaptations of major clades. Elements derived from neural crest show the fastest rates of evolution, but ecological signal is equally pronounced in bones derived from neural crest and paraxial mesoderm, suggesting that developmental origin may influence evolutionary tempo, but not capacity for specialisation. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Anjali Goswami
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Eve Noirault
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Ellen J Coombs
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Julien Clavel
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69622 Villeurbanne, France
| | - Anne-Claire Fabre
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Naturhistorisches Museum Bern, 3005 Bern, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Thomas J D Halliday
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Morgan Churchill
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA
| | - Abigail Curtis
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Akinobu Watanabe
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Brian L Beatty
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Jonathan H Geisler
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - David L Fox
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryan N Felice
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|