1
|
Jin FF, Wang CJ, Cui L, Liu FF, Wang KL, Li WJ, Li ZG. Interaction of E2F3a and CASP8AP2 Regulates Histone Expression and Chemosensitivity of Leukemic Cells. J Pediatr Hematol Oncol 2023; 45:e339-e344. [PMID: 36162009 PMCID: PMC10030168 DOI: 10.1097/mph.0000000000002558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022]
Abstract
Low expression levels of E2F3a and caspase 8-associated protein 2 (CASP8AP2) are associated with poor outcomes in children with acute lymphoblastic leukemia. Our previous study showed that a combined assessment of E2F3a and CASP8AP2 expression was more accurate in predicting relapse in children with acute lymphoblastic leukemia. However, the underlying mechanism remains unclear. In this study, the interaction between E2F3a and CASP8AP2 and its role in the regulation of histone expression, cell proliferation, the cell cycle, and chemosensitivity were investigated. Exogenous E2F3a-GST was coprecipitated with CASP8AP2-FLAG in HEK-293T cells. E2F3a was colocalized with CASP8AP2-GFP in the nucleus. The replication-dependent histones H2A and H2B were significantly upregulated when E2F3a or CASP8AP2 was overexpressed in HEK-293T or 697 cells and downregulated by E2F3a or CASP8AP2 knockdown. E2F3a and CASP8AP2 could collaboratively enhance the transcriptional activity of HIST1H2AG and HIST1H2BK . Both CASP8AP2 and E2F3a are involved in S phase progression. E2F3a and CASP8AP2 also affected the sensitivity of leukemic cells to daunorubicin. Therefore, CASP8AP2 and E2F3a collaboratively regulated replication-dependent histone expression, cell cycle progression, and chemosensitivity of leukemic cells.
Collapse
Affiliation(s)
- Fen-fen Jin
- Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematologic Diseases Laboratory, Hematology Center, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health
- Department of Hematology-Oncology, Children’s Hospital, Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chan-juan Wang
- Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematologic Diseases Laboratory, Hematology Center, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health
| | - Lei Cui
- Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematologic Diseases Laboratory, Hematology Center, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health
| | - Fei-fei Liu
- Department of Pediatrics, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Kai-ling Wang
- Department of Pediatrics, Beijing Luhe Hospital, Capital Medical University, Beijing
| | - Wei-jing Li
- Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematologic Diseases Laboratory, Hematology Center, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health
| | - Zhi-gang Li
- Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematologic Diseases Laboratory, Hematology Center, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health
| |
Collapse
|
2
|
Alsagaby SA. Omics-based insights into therapy failure of pediatric B-lineage acute lymphoblastic leukemia. Oncol Rev 2019; 13:435. [PMID: 31565196 PMCID: PMC6747058 DOI: 10.4081/oncol.2019.435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/20/2019] [Indexed: 11/23/2022] Open
Abstract
B-lineage acute lymphoblastic leukemia (B-ALL) is the most common type of cancer seen in children and is characterized by a variable clinical course. Although there have been remarkable improvements in the therapy outcomes of pediatric B-ALL, treatment failure remains the leading-cause of death in 18% of the afflicted patients during the first 5 years after diagnosis. Molecular heterogeneities of pediatric B-ALL play important roles as determinants of the therapy response. Therefore, many of these molecular abnormalities have an established prognostic value in the disease. The present review discusses the omics-based revelations from epigenomics, genomics, transcriptomics and proteomics about treatment failure in pediatric B-ALL. Next it highlights the promise of the molecular aberration-targeted therapy to improve the treatment outcomes.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, Saudi Arabia
| |
Collapse
|
3
|
Yue ZX, Gao RQ, Gao C, Liu SG, Zhao XX, Xing TY, Niu J, Li ZG, Zheng HY, Ding W. The prognostic potential of coilin in association with p27 expression in pediatric acute lymphoblastic leukemia for disease relapse. Cancer Cell Int 2018; 18:106. [PMID: 30065619 PMCID: PMC6062948 DOI: 10.1186/s12935-018-0600-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
Background Cajal body (CB) is a nucleic organelle where small nuclear ribonucleoproteins undergo modification, maturation, splicing and/or assembly. Coilin is the marker structural protein of CBs. The expression level and cellular localization of coilin is sensitive to chemotherapeutic reagents, such as cisplatin. The gene of cyclin-dependent kinase inhibitor 1B (p27) is located with a high incidence translocation region of leukemic chromosomes, and its expression was of prognosis values in a variety of adult leukemia types. The exact profile and associated functions of coilin, as well as p27, in children’s acute lymphoblastic leukemia (ALL) is obscure. Methods Bone marrow samples from 144 patients with ALL were collected. The expression levels of coilin and p27 were detected by qRT-PCR. The patient cohort was divided into low and high groups of coilin and p27 respectively. The prognosis and clinicobiological characteristics of different groups were investigated, especially focused on the treatment outcome. Leukemia cells of Reh or RS4;11 were exposed to different concentrations of DNR, prior to the detection for morphological changes of coilin by immunofluorescence. In Reh cells, lentivirus sh-coilin was used to silence coilin expression. Western blotting was used to detect coilin and p27 expression; flow cytometry was used for cell cycle and apoptosis assay; MTS method was used for measuring cell viability to examine the drug sensitivity of DNR. Results In this study, we found that daunorubicin was able to induce significant morphological changes of CBs in Reh and RS4;11 cells. Knockdown the expression of coilin increased the sensitivity to daunorubicin and inhibited the expression of p27 in Reh cells, and led to increased apoptosis. Importantly, not only the levels of coilin and p27 mRNA expression at initial diagnosis ALL children are markedly higher than those at complete remission (CR), but also both coilin and p27 expression in the relapsed patients was observed significantly higher comparing to the continuous CR patients. The 4-year EFS and RFS indicated that low levels of both coilin and p27 group favored better prognosis (p < 0.05). Conclusions Our results indicated that consideration of coilin and p27 levels could be a prognostic reference for predicting the outcome of pediatric ALL patients, especially for disease recurrence. Reduction of coilin expression was sufficient to increase the sensitivity of leukemic cells to daunorubicin treatments, and during which possibly involved functions of p27 in cell cycle regulation and its effects on cell apoptosis.
Collapse
Affiliation(s)
- Zhi-Xia Yue
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China.,Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Rui-Qi Gao
- 3Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Xiao-Xi Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Tian-Yu Xing
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Jing Niu
- 3Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China.,4Beijing Key Laboratory for Tumor Invasion and Metastasis Research, Cancer Institute of Capital Medical University, Beijing, 100069 China
| | - Zhi-Gang Li
- Key Laboratory of Major Diseases in Children (Capital Medical University), Ministry of Education, National Key Discipline of Pediatrics, Ministry of Education, Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Hu-Yong Zheng
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Wei Ding
- 3Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China.,4Beijing Key Laboratory for Tumor Invasion and Metastasis Research, Cancer Institute of Capital Medical University, Beijing, 100069 China
| |
Collapse
|
4
|
Liu FF, Wang KL, Deng LP, Liu X, Wu MY, Wang TY, Cui L, Li ZG. Transcription factor E2F3a regulates CASP8AP2 transcription and enhances sensitivity to chemotherapeutic drugs in acute lymphoblastic leukemia. Cancer Cell Int 2018; 18:40. [PMID: 29568235 PMCID: PMC5859744 DOI: 10.1186/s12935-018-0531-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/02/2018] [Indexed: 11/24/2022] Open
Abstract
Background Low expression of E2F3a and caspase 8 associated protein 2 (CASP8AP2) are associated with poor prognosis of childhood acute lymphoblastic leukemia (ALL). Methods Dual-luciferase reporter assay and wild type as well as four mutated types of reporter plasmids were used to demonstrate the activation of E2F3a on CASP8AP2 transcription. The direct binding of E2F3a with the promoter of CASP8AP2 was shown by Chromatin Immunoprecipitation (ChIP). Cell proliferation activity and cell cycle were determined by MTS and flow cytometry in leukemic cells after treating with common chemotherapeutic drugs vincristine and daunorubicin. Results In this study, we found that up-regulation of E2F3a in leukemic cells led to increased fraction of cells in S and G2/M phase, accelerated proliferation, and enhanced sensitivity to vincristine and daunorubicin. ChIP and luciferase assay indicated that E2F3a could directly bind to two fragments in the wild type of CASP8AP2 promotor (− 206 to − 69 and − 677 to − 507), and activate its transcription activity which was reduced in mutated promotors. The effect of E2F3a on chemotherapeutic sensitivity of leukemic cells could be reversed by down-regulating CASP8AP2. Conclusions E2F3a could promote transcription and expression of CASP8AP2. The effect of E2F3a on chemotherapeutic sensitivity of ALL cells was implemented by regulating CASP8AP2 expression to a great extent.
Collapse
Affiliation(s)
- Fei-Fei Liu
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,3Present Address: Department of Pediatrics, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603 Shandong Province China
| | - Kai-Ling Wang
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,4Present Address: Department of Pediatrics, Beijing Luhe Hospital, Capital Medical University, 82 Xinhua Nan Road, Tongzhou District, Beijing, 101149 China
| | - Li-Ping Deng
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| | - Xiao Liu
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| | - Min-Yuan Wu
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| | - Tian-You Wang
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| | - Lei Cui
- Hematology & Oncology Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| | - Zhi-Gang Li
- Hematology & Oncology Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| |
Collapse
|
5
|
Mei Y, Li Z, Zhang Y, Zhang W, Hu H, Zhang P, Wu M, Huang D. Low miR-210 and CASP8AP2 expression is associated with a poor outcome in pediatric acute lymphoblastic leukemia. Oncol Lett 2017; 14:8072-8077. [PMID: 29250188 DOI: 10.3892/ol.2017.7229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 03/28/2017] [Indexed: 11/06/2022] Open
Abstract
The prognostic significance of microRNA (miR)-210 and the caspase 8-associated protein 2 (CASP8AP2) gene in children with acute lymphoblastic leukemia (ALL) has been validated and CASP8AP2 has been demonstrated as a target of miR-210. In the present study, the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine miR-210 and CASP8AP2 expression in 91 children with ALL. Associations between gene expression levels and the prognostic value of combined detection of the two indicators were analyzed. Results from a receiver operating characteristic curve demonstrated that threshold values of miR-210 and CASP8AP2 were 3.8243 and 0.4760, respectively. Although the expression of miR-210 and CASP8AP2 were not associated at the mRNA level in pediatric ALL, combined detection of the two predicted ALL prognosis with an increased accuracy. Furthermore, an equation was devised including minimal residual disease at day 33 and expression of miR-210 and CASP8AP2, which may enable bone marrow relapse to be predicted more precisely compared with the current risk stratification.
Collapse
Affiliation(s)
- Yanyan Mei
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Zhigang Li
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Hematology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Yi Zhang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Weiling Zhang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Huimin Hu
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Pinwei Zhang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Minyuan Wu
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Hematology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Dongsheng Huang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| |
Collapse
|
6
|
Shen ZG, Liu XZ, Chen CX, Lu JM. Knockdown of E2F3 Inhibits Proliferation, Migration, and Invasion and Increases Apoptosis in Glioma Cells. Oncol Res 2017; 25:1555-1566. [PMID: 28337965 PMCID: PMC7841128 DOI: 10.3727/096504017x14897158009178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
E2F3a, as a member of the E2F family, is essential for cell division associated with the progression of many cancers. However, the biological effect of E2F3a on glioma is not understood as well. To investigate the functional mechanism of E2F3a in glioma, we examined the expression of E2F3a in glioma tissue and cell lines. We found that E2F3a was upregulated in glioma tissue compared with adjacent tissue, and this was associated with a poor survival rate. E2F3a was highly expressed in glioma cell lines compared with normal HEB cell lines. Knockdown of E2F3a significantly inhibited cell proliferation, promoted G0/G1 phase arrest, elevated apoptosis rates, and suppressed cell migration and invasion. However, overexpression of E2F3a markedly promoted cell proliferation, migration, and invasion and inhibited apoptosis. Moreover, in vivo studies showed that knockdown of E2F3a expression dramatically inhibited U373 tumor growth in a nude mouse model. Results of real-time PCR and Western blot showed that the depletion of E2F3a upregulated the expression levels of cell apoptosis-related proteins and downregulated migration-related proteins. Conversely, E2F3a overexpression downregulated the expression levels of cell apoptosis-related proteins and upregulated migration-related proteins. In conclusion, our results highlight the importance of E2F3a in glioma and provide new insights into the diagnostics and therapeutics of gliomas.
Collapse
|
7
|
Cui L, Gao C, Zhang RD, Jiao Y, Li WJ, Zhao XX, Liu SG, Yue ZX, Zheng HY, Deng GR, Wu MY, Li ZG, Jia HT. Low expressions of ARS2 and CASP8AP2 predict relapse and poor prognosis in pediatric acute lymphoblastic leukemia patients treated on China CCLG-ALL 2008 protocol. Leuk Res 2014; 39:115-23. [PMID: 25530566 DOI: 10.1016/j.leukres.2014.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/22/2014] [Accepted: 10/25/2014] [Indexed: 10/24/2022]
Abstract
ARS2 protein is important to early development and cell proliferation, in which ARS2-CASP8AP2 interaction is implicated. However, the predictive significance of ARS2 in childhood acute lymphoblastic leukemia (ALL) is unknown. Here we evaluate the predictive values of ARS2 expression and combined ARS2 and CASP8AP2 expression in relapse. We showed that ARS2 expression in ALL bone marrow samples at initial diagnosis was markedly lower than that in complete remission (CR). Likewise, the levels of ARS2 expression in the patients suffering from relapse were significantly lower than that of patients in continuous CR. Furthermore, low expression of ARS2 was closely correlated to poor treatment response including poor prednisone response and high minimal residual disease (MRD), and the patients with high MRD (≥10(-4)) and low ARS2 were more subject to relapse. The multivariate analyses for relapse free survival and event free survival revealed that ARS2 expression remained an independent prognostic factor after adjusting other risk factors. In addition, combined assessment of ARS2 and CASP8AP2 expression was more accurate to predict relapse, based on which an algorithm composed of ARS2 and CASP8AP2 expression, prednisone response and MRD (day 78) was proposed. Together, ARS2 and CASP8AP2 expressions can precisely predict high-risk of relapse and ALL prognosis.
Collapse
Affiliation(s)
- Lei Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Rui-Dong Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Ying Jiao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei-Jing Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiao-Xi Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhi-Xia Yue
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hu-Yong Zheng
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Guo-Ren Deng
- Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Min-Yuan Wu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhi-Gang Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Hong-Ti Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|