1
|
Smallbone P, Mehta RS, Alousi A. Steroid Refractory Acute GVHD: The Hope for a Better Tomorrow. Am J Hematol 2025; 100 Suppl 3:14-29. [PMID: 40123554 DOI: 10.1002/ajh.27592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 03/25/2025]
Abstract
Steroid-refractory acute graft-versus-host disease (SR-AGVHD) presents a significant barrier to successful outcomes following allogeneic hematopoietic cell transplantation (HCT), despite advancements in GVHD prophylaxis and management. While ruxolitinib therapy has shown improved response rates, survival benefits remain elusive. This review explores the definitions and proposed distinct pathophysiology and treatment landscape of SR-AGVHD. Emerging therapies offer potential, yet further research is critical to better define steroid-refractory populations, improve treatment precision with biomarkers, and overcome resistance, particularly in ruxolitinib-refractory cases.
Collapse
Affiliation(s)
- Portia Smallbone
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rohtesh S Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amin Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Kim NH, Hamadani M, Abedin S. New investigational drugs for steroid-refractory acute graft-versus-host disease: a review of the literature. Expert Opin Investig Drugs 2024; 33:791-799. [PMID: 38973782 PMCID: PMC11305901 DOI: 10.1080/13543784.2024.2377322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Steroid-refractory acute graft-versus-host disease (SR-aGVHD) remains a formidable obstacle in the field of allogeneic hematopoietic cell transplantation (allo-HCT), significantly contributing to patient morbidity and mortality. The current therapeutic landscape for SR-aGVHD is limited, often yielding suboptimal results, thereby emphasizing the urgent need for innovative and effective treatments. AREAS COVERED In light of the pivotal REACH2 trial, ruxolitinib phosphate, a Janus kinase inhibitor, has gained prominence as the standard treatment for SR-aGVHD. Nevertheless, a considerable number of patients either do not respond to or cannot tolerate this therapy. This review delves into emerging treatments for SR-aGVHD, including mesenchymal stromal cells (MSCs), fecal microbiota transplantation (FMT), CD3/CD7 blockade, neihulizumab, begelomab, tocilizumab, and vedolizumab. While some of these agents have shown encouraging results in early-phase trials, issues such as treatment-related toxicities and inconsistent responses in larger studies highlight the necessity for ongoing research. EXPERT OPINION Current trials exploring new agents and combination therapies offer hope for fulfilling the unmet clinical needs in SR-aGVHD, potentially leading to more effective and precise treatment strategies.
Collapse
Affiliation(s)
- Na Hyun Kim
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Mehdi Hamadani
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Sameem Abedin
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| |
Collapse
|
3
|
Fu H, Sun X, Lin R, Wang Y, Xuan L, Yao H, Zhang Y, Mo X, Lv M, Zheng F, Kong J, Wang F, Yan C, Han T, Chen H, Chen Y, Tang F, Sun Y, Chen Y, Xu L, Liu K, Zhang X, Liu Q, Huang X, Zhang X. Mesenchymal stromal cells plus basiliximab improve the response of steroid-refractory acute graft-versus-host disease as a second-line therapy: a multicentre, randomized, controlled trial. BMC Med 2024; 22:85. [PMID: 38413930 PMCID: PMC10900595 DOI: 10.1186/s12916-024-03275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND For patients with steroid-refractory acute graft-versus-host disease (SR-aGVHD), effective second-line regimens are urgently needed. Mesenchymal stromal cells (MSCs) have been used as salvage regimens for SR-aGVHD in the past. However, clinical trials and an overall understanding of the molecular mechanisms of MSCs combined with basiliximab for SR-aGVHD are limited, especially in haploidentical haemopoietic stem cell transplantation (HID HSCT). METHODS The primary endpoint of this multicentre, randomized, controlled trial was the 4-week complete response (CR) rate of SR-aGVHD. A total of 130 patients with SR-aGVHD were assigned in a 1:1 randomization schedule to the MSC group (receiving basiliximab plus MSCs) or control group (receiving basiliximab alone) (NCT04738981). RESULTS Most enrolled patients (96.2%) received HID HSCT. The 4-week CR rate of SR-aGVHD in the MSC group was obviously better than that in the control group (83.1% vs. 55.4%, P = 0.001). However, for the overall response rates at week 4, the two groups were comparable. More patients in the control group used ≥ 6 doses of basiliximab (4.6% vs. 20%, P = 0.008). We collected blood samples from 19 consecutive patients and evaluated MSC-derived immunosuppressive cytokines, including HO1, GAL1, GAL9, TNFIA6, PGE2, PDL1, TGF-β and HGF. Compared to the levels before MSC infusion, the HO1 (P = 0.0072) and TGF-β (P = 0.0243) levels increased significantly 1 day after MSC infusion. At 7 days after MSC infusion, the levels of HO1, GAL1, TNFIA6 and TGF-β tended to increase; however, the differences were not statistically significant. Although the 52-week cumulative incidence of cGVHD in the MSC group was comparable to that in the control group, fewer patients in the MSC group developed cGVHD involving ≥3 organs (14.3% vs. 43.6%, P = 0.006). MSCs were well tolerated, no infusion-related adverse events (AEs) occurred and other AEs were also comparable between the two groups. However, patients with malignant haematological diseases in the MSC group had a higher 52-week disease-free survival rate than those in the control group (84.8% vs. 65.9%, P = 0.031). CONCLUSIONS For SR-aGVHD after allo-HSCT, especially HID HSCT, the combination of MSCs and basiliximab as the second-line therapy led to significantly better 4-week CR rates than basiliximab alone. The addition of MSCs not only did not increase toxicity but also provided a survival benefit.
Collapse
Affiliation(s)
- Haixia Fu
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Xueyan Sun
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Ren Lin
- Medical Center of Haematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Li Xuan
- Medical Center of Haematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Han Yao
- Department of Haematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuanyuan Zhang
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Xiaodong Mo
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Fengmei Zheng
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Fengrong Wang
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Chenhua Yan
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Tingting Han
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Yao Chen
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Feifei Tang
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Yuqian Sun
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Yuhong Chen
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Kaiyan Liu
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Xi Zhang
- Medical Center of Haematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Qifa Liu
- Department of Haematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China.
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China.
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China.
- National Clinical Research Center for Haematologic Disease, Beijing, China.
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China.
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China.
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China.
- National Clinical Research Center for Haematologic Disease, Beijing, China.
| |
Collapse
|
4
|
Jiang XY, Zhang XH, Xu LP, Wang Y, Yan CH, Chen H, Chen YH, Han W, Wang FR, Wang JZ, Sun YQ, Mo XD, Huang XJ. Basiliximab Treatment for Patients With Steroid-Refractory Acute Graft-Versus-Host Disease Following Matched Sibling Donor Hematopoietic Stem Cell Transplantation. Cell Transplant 2024; 33:9636897241257568. [PMID: 38832653 DOI: 10.1177/09636897241257568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Basiliximab is an important treatment for steroid-refractory acute graft-versus-host disease (SR-aGVHD). We performed this retrospective study to evaluate the efficacy and safety of basiliximab treatment in SR-aGVHD patients following matched sibling donor hematopoietic stem cell transplantation (MSD-HSCT) (n = 63). Overall response rate (ORR) was 63.5% and 54% at any time and at day 28 after basiliximab treatment. Grade III-IV aGVHD before basiliximab treatment predicted a poor ORR after basiliximab treatment. The rates of virus, bacteria, and fungi infections were 54%, 23.8%, and 3.1%, respectively. With a median follow-up of 730 (range, 67-3,042) days, the 1-year probability of overall survival and disease-free survival after basiliximab treatment were 58.6% (95% confidence interval [CI] = 47.6%-72.2%) and 55.4% (95% CI = 44.3%-69.2%), respectively. The 3-year cumulative incidence of relapse and non-relapse mortality after basiliximab treatment were 18.9% (95% CI = 8.3%-29.5%) and 33.8% (95% CI = 21.8%-45.7%), respectively. Comorbidities burden before allo-HSCT, severity of aGVHD and liver aGVHD before basiliximab treatment showed negative influences on survival. Thus, basiliximab was safe and effective treatment for SR-aGVHD following MSD-HSCT.
Collapse
Affiliation(s)
- Xin-Ya Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Hui Zhang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Lan-Ping Xu
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yu Wang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Chen-Hua Yan
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Huan Chen
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yu-Hong Chen
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Wei Han
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Feng-Rong Wang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Jing-Zhi Wang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yu-Qian Sun
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Dong Mo
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Jun Huang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Hong J, Fraebel J, Yang Y, Tkacyk E, Kitko C, Kim TK. Understanding and treatment of cutaneous graft-versus-host-disease. Bone Marrow Transplant 2023; 58:1298-1313. [PMID: 37730800 PMCID: PMC11759061 DOI: 10.1038/s41409-023-02109-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
The skin is the outermost mechanical barrier where dynamic immune reactions take place and is the most commonly affected site in both acute and chronic graft-versus-host disease (GVHD). If not properly treated, pain and pruritis resulting from cutaneous GVHD can increase the risk of secondary infection due to erosions, ulcerations, and damage of underlying tissues. Furthermore, resulting disfiguration can cause distress and significantly impact patients' quality of life. Thus, a deeper understanding of skin-specific findings of GVHD is needed. This review will highlight some promising results of recent pre-clinical studies on the pathophysiology of skin GVHD and summarize the diagnostic and staging/grading procedures according to the clinical manifestations of skin GVHD. In addition, we will summarize outcomes of various GVHD treatments, including skin-specific response rates.
Collapse
Affiliation(s)
- Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Johnathan Fraebel
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yenny Yang
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Tkacyk
- Veterans Affairs Tennessee Valley Health Care, Nashville, TN, USA
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carrie Kitko
- Monroe Carell Jr Children's Hospital, Vanderbilt Division of Pediatric Hematology-Oncology, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Health Care, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Liu J, Fan Z, Xu N, Ye J, Chen Y, Shao R, Sun Y, Wu Q, Liu Q, Jin H. Ruxolitinib versus basiliximab for steroid-refractory acute graft-versus-host disease: a retrospective study. Ann Hematol 2023; 102:2865-2877. [PMID: 37474631 DOI: 10.1007/s00277-023-05361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Acute graft-versus-host disease (aGVHD) remains a major limitation of allogeneic hematopoietic stem cell transplantation; not all patients respond to standard glucocorticoids treatment. This study retrospectively evaluated the effects of ruxolitinib compared with basiliximab for steroid-refractory aGVHD (SR-aGVHD). One hundred and twenty-nine patients were enrolled, 81 in ruxolitinib and 48 in basiliximab group. The overall response (OR) at day 28 was higher in ruxolitinib group (72.8% vs. 54.2%, P = 0.031), as with complete response (CR) (58.0% vs. 35.4%, P = 0.013). Ruxolitinib led to significantly lower 1-year cumulative incidence of chronic GVHD (cGVHD) (29.6% vs. 43.8%, P = 0.021). Besides, ruxolitinib showed higher 1-year overall survival (OS) and 1-year cumulative incidence of failure-free survival (FFS) (OS: 72.8% vs. 50.0%, P = 0.008; FFS: 58.9% vs. 39.6%, P = 0.014). The 1-year cumulative incidence of non-relapse mortality (NRM) was lower in ruxolitinib group (16.1% vs. 37.5%, P = 0.005), and the 1-year relapse was not different. The 1-year cumulative incidence of cytomegalovirus (CMV) viremia, CMV-associated diseases and Epstein-Barr virus (EBV)-associated diseases was similar between the two groups, but EBV viremia was significantly lower in ruxolitinib group (6.2% vs. 29.2%, P < 0.001). Subgroup analyses revealed that OR and survival were similar in ruxolitinib 5 mg twice daily (bid) and 10 mg bid groups. However, ruxolitinib 10 mg bid treatment markedly reduced 1-year cumulative incidence of cGVHD compared with 5 mg bid (21.1% vs. 50.0%, P = 0.016). Our study demonstrated that ruxolitinib was superior to basiliximab in SR-aGVHD treatment and cGVHD prophylaxis, therefore should be recommended.
Collapse
Affiliation(s)
- Jiapei Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jieyu Ye
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqiu Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, Maoming People's Hospital, Maoming, China
| | - Ruoyang Shao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiming Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiaoyuan Wu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Deng DX, Fan S, Zhang XH, Xu LP, Wang Y, Yan CH, Chen H, Chen YH, Han W, Wang FR, Wang JZ, Pei XY, Chang YJ, Liu KY, Huang XJ, Mo XD. Immune Reconstitution of Patients Who Recovered From Steroid-Refractory Acute Graft-Versus-Host Disease After Basiliximab Treatment. Front Oncol 2022; 12:916442. [PMID: 35936697 PMCID: PMC9351448 DOI: 10.3389/fonc.2022.916442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
We aimed to identify the characteristics of immune reconstitution (IR) in patients who recovered from steroid-refractory acute graft-versus-host disease (SR-aGVHD) after basiliximab treatment. A total of 179, 124, 80, and 92 patients were included in the analysis for IR at 3, 6, 9, and 12 months, respectively, after haploidentical donor hematopoietic stem cell transplantation (HID HSCT). We observed that IR was fastest for monocytes and CD8+ T cells, followed by lymphocytes, CD3+ T cells, and CD19+ B cells and slowest for CD4+ T cells. Almost all immune cell subsets recovered comparably between patients receiving <5 doses and ≥5 doses of basiliximab. Most immune cell subsets recovered comparably between SR-aGVHD patients who recovered after basiliximab treatment and event-free HID HSCT recipients. Patients who recovered from SR-aGVHD after basiliximab treatment experienced satisfactory IR, which suggested that basiliximab may not have prolonged the negative impact on IR in these patients.
Collapse
Affiliation(s)
- Dao-Xing Deng
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Shuang Fan
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Huan Chen
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Hong Chen
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wei Han
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing-Zhi Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xu-Ying Pei
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ying-Jun Chang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kai-Yan Liu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Dong Mo
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Xiao-Dong Mo,
| |
Collapse
|
8
|
Mo XD, Hong SD, Zhao YL, Jiang EL, Chen J, Xu Y, Sun ZM, Zhang WJ, Liu QF, Liu DH, Wan DM, Mo WJ, Ren HY, Yang T, Huang H, Zhang X, Wang XN, Song XM, Gao SJ, Wang X, Chen Y, Xu B, Jiang M, Huang XB, Li X, Zhang HY, Wang HT, Wang Z, Niu T, Wang JS, Xia LH, Liu XD, Li F, Zhou F, Lang T, Hu J, Wu SJ, Huang XJ. Basiliximab for steroid-refractory acute graft-versus-host disease: A real-world analysis. Am J Hematol 2022; 97:458-469. [PMID: 35064928 DOI: 10.1002/ajh.26475] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023]
Abstract
Steroid-refractory (SR) acute graft-versus-host disease (aGVHD) is one of the leading causes of early mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We investigated the efficacy, safety, prognostic factors, and optimal therapeutic protocol for SR-aGVHD patients treated with basiliximab in a real-world setting. Nine hundred and forty SR-aGVHD patients were recruited from 36 hospitals in China, and 3683 doses of basiliximab were administered. Basiliximab was used as monotherapy (n = 642) or in combination with other second-line treatments (n = 298). The cumulative incidence of overall response rate (ORR) at day 28 after basiliximab treatment was 79.4% (95% confidence interval [CI] 76.5%-82.3%). The probabilities of nonrelapse mortality and overall survival at 3 years after basiliximab treatment were 26.8% (95% CI 24.0%-29.6%) and 64.3% (95% CI 61.2%-67.4%), respectively. A 1:1 propensity score matching was performed to compare the efficacy and safety between the monotherapy and combined therapy groups. Combined therapy did not increase the ORR; conversely, it increased the infection rates compared with monotherapy. The multivariate analysis showed that combined therapy, grade III-IV aGVHD, and high-risk refined Minnesota aGVHD risk score before basiliximab treatment were independently associated with the therapeutic response. Hence, we created a prognostic scoring system that could predict the risk of having a decreased likelihood of response after basiliximab treatment. Machine learning was used to develop a protocol that maximized the efficacy of basiliximab while maintaining acceptable levels of infection risk. Thus, real-world data suggest that basiliximab is safe and effective for treating SR-aGVHD.
Collapse
Affiliation(s)
- Xiao-Dong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences (2019RU029), Beijing, China
| | - Shen-Da Hong
- National Institute of Health Data Science at Peking University, Peking University Health Science Center, Beijing, China
| | - Yan-Li Zhao
- Hebei Yanda Lu Daopei Hospital, Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Er-Lie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jing Chen
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zi-Min Sun
- Department of Hematology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei-Jie Zhang
- Department of Hematology, Aerospace Center Hospital, Beijing, China
| | - Qi-Fa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dai-Hong Liu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Ding-Ming Wan
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-Jian Mo
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Han-Yun Ren
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Ting Yang
- Fujian Medical University Union Hospital, Fujian Institute of Hematology, Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fuzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University; State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Xiao-Ning Wang
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xian-Min Song
- Department of Hematology, Shanghai general Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Su-Jun Gao
- Department of Hematology, the First Hospital of Jilin University, Changchun, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi Chen
- Department of Hematology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hematology, Wenzhou, China
| | - Bing Xu
- The First Affiliated Hospital of Xiamen University, Xiamen University Institute of Hematology, Xiamen, China
| | - Ming Jiang
- Hematologic Disease Center, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology Xinjiang Medical University, Urumqi, China
| | - Xiao-Bing Huang
- Department of Hematology, Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Li
- Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Yu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hong-Tao Wang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhao Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ting Niu
- Department of Hematology, West China hospital, Sichuan University, Chengdu, China
| | - Ji-Shi Wang
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, Department of Hematology, Key Laboratory of Hematological Disease Diagnostic and Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ling-Hui Xia
- Division of Bone Marrow Transplantation, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Dan Liu
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fei Li
- Department of Hematology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fang Zhou
- Department of Hematology, the 960 Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Tao Lang
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jiong Hu
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sui-Jing Wu
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences (2019RU029), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
9
|
Shen MZ, Li JX, Zhang XH, Xu LP, Wang Y, Liu KY, Huang XJ, Hong SD, Mo XD. Meta-Analysis of Interleukin-2 Receptor Antagonists as the Treatment for Steroid-Refractory Acute Graft- Versus-Host Disease. Front Immunol 2021; 12:749266. [PMID: 34621279 PMCID: PMC8490710 DOI: 10.3389/fimmu.2021.749266] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is a major complication after allogeneic hematopoietic stem cell transplantation (HSCT). Corticosteroid is the first-line treatment for aGVHD, but its response rate is only approximately 50%. At present, no uniformly accepted treatment for steroid-refractory aGVHD (SR-aGVHD) is available. Blocking interleukin-2 receptors (IL-2Rs) on donor T cells using pharmaceutical antagonists alleviates SR-aGVHD. This meta-analysis aimed to compare the efficacy and safety of four commercially available IL-2R antagonists (IL-2RAs) in SR-aGVHD treatment. A total of 31 studies met the following inclusion criteria (1): patients of any race, any sex, and all ages (2); those diagnosed with SR-aGVHD after HSCT; and (3) those using IL-2RA-based therapy as the treatment for SR-aGVHD. The overall response rate (ORR) at any time after treatment with basiliximab and daclizumab was 0.81 [95% confidence interval (CI): 0.74-0.87)] and 0.71 (95% CI: 0.56-0.82), respectively, which was better than that of inolimomab 0.54 (95% CI: 0.39-0.68) and denileukin diftitox 0.56 (95% CI: 0.35-0.76). The complete response rate (CRR) at any time after treatment with basiliximab and daclizumab was 0.55 (95% CI: 0.42-0.68) and 0.42 (95%CI: 0.29-0.56), respectively, which was better than that of inolimomab 0.30 (95% CI: 0.16-0.51) and denileukin diftitox 0.37 (95% CI: 0.24-0.52). The ORR and CRR were better after 1-month treatment with basiliximab and daclizumab than after treatment with inolimomab and denileukin diftitox. The incidence of the infection was higher after inolimomab treatment than after treatment with the other IL-2RAs. In conclusion, the efficacy and safety of different IL-2RAs varied. The response rate of basiliximab was the highest, followed by that of daclizumab. Prospective, randomized controlled trials are needed to compare the efficacy and safety of different IL-2RAs.
Collapse
Affiliation(s)
- Meng-Zhu Shen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing-Xia Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Shen-Da Hong
- National Institute of Health Data Science at Peking University, Peking University Health Science Center, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Abstract
Acute graft-versus-host disease (GVHD), the major complication after allogeneic hematopoietic cell transplant (HCT), develops in approximately 50% of patients. The primary treatment is high-dose systemic steroids, but treatment failure is common, and steroid-refractory (SR) GVHD is the leading cause of non-relapse mortality after allogeneic HCT. Ruxolitinib became the first treatment for SR GVHD to obtain US Food and Drug Administration approval, and other new treatments are actively being studied. We searched the literature using the PubMed database and clinical trials using ClinicalTrials.gov to identify the most promising new treatments for GVHD. In this review, we categorize potential new treatments for GVHD by their mechanism of action (e.g., antibodies that deplete T cells or prevent their trafficking to target tissues, proteasome inhibitors, tyrosine kinase inhibitors, and other agents) and summarize the results from clinical trials.
Collapse
Affiliation(s)
- Stelios Kasikis
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Aaron Etra
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - John E Levine
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA.
| |
Collapse
|
11
|
Liu S, Zhang X, Xu L, Wang Y, Yan C, Chen H, Chen Y, Han W, Wang F, Wang J, Liu K, Huang X, Mo X. Prognostic factors and long-term follow-up of basiliximab for steroid-refractory acute graft-versus-host disease: Updated experience from a large-scale study. Am J Hematol 2020; 95:927-936. [PMID: 32311156 DOI: 10.1002/ajh.25839] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/16/2023]
Abstract
Acute graft-vs-host disease (aGVHD) is one of the most important causes of early mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT), particularly for those with steroid-refractory (SR)-aGVHD. We aimed to identify the prognostic factors and long-term clinical outcomes of basiliximab treatment for SR-aGVHD. Basiliximab was administered on days 1, 3, and 8, and repeated weekly until aGVHD was less than grade II, or patients showed no response after four doses. Out of 1498 patients receiving allo-HSCT, 230 patients with SR-aGVHD were enrolled. Grade III to IV aGVHD before basiliximab treatment significantly and independently predicted a poorer response to basiliximab in multivariate analysis. And, the cumulative incidence of overall response at 14 days, 28 days, and 56 days after treatment was 41.4% vs 23.1% (P = .023), 70.2% vs 43.6% (P = .002), and 80.1% vs 66.7% (P = .013), respectively. This was for those with grade II and grade III to IV aGVHD. Patients receiving more than four doses of basiliximab had higher rates of infections. The 4-year cumulative incidence of total and severe chronic GVHD after basiliximab treatment was 44.8% (95% CI 38.3%-51.3%) and 2.2% (95% CI 0.3%-4.1%), respectively. The 4-year cumulative incidence of relapse, non-relapse mortality, disease-free survival, and overall survival after basiliximab treatment was 11.3% (95% CI 7.2%-15.4%), 30.0% (95% CI 24.1%-35.9%), 58.7% (95% CI 52.3%-65.1%), and 61.7% (95% CI 55.4%-68.0%), respectively. Comorbidities before allo-HSCT and refined Minnesota aGVHD risk score at diagnosis had significant influences on long-term survival. Thus, basiliximab was a safe and effective treatment for patients with SR-aGVHD.
Collapse
Affiliation(s)
- Si‐Ning Liu
- Peking University People's Hospital, Peking University Institute of HematologyNational Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Xiao‐Hui Zhang
- Peking University People's Hospital, Peking University Institute of HematologyNational Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Lan‐Ping Xu
- Peking University People's Hospital, Peking University Institute of HematologyNational Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic MalignanciesChinese Academy of Medical Sciences, 2019RU029 Beijing China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of HematologyNational Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Chen‐Hua Yan
- Peking University People's Hospital, Peking University Institute of HematologyNational Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of HematologyNational Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Yu‐Hong Chen
- Peking University People's Hospital, Peking University Institute of HematologyNational Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of HematologyNational Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Feng‐Rong Wang
- Peking University People's Hospital, Peking University Institute of HematologyNational Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Jing‐Zhi Wang
- Peking University People's Hospital, Peking University Institute of HematologyNational Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Kai‐Yan Liu
- Peking University People's Hospital, Peking University Institute of HematologyNational Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Xiao‐Jun Huang
- Peking University People's Hospital, Peking University Institute of HematologyNational Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- Peking‐Tsinghua Center for Life Sciences Beijing 100044 China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic MalignanciesChinese Academy of Medical Sciences, 2019RU029 Beijing China
| | - Xiao‐Dong Mo
- Peking University People's Hospital, Peking University Institute of HematologyNational Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic MalignanciesChinese Academy of Medical Sciences, 2019RU029 Beijing China
| |
Collapse
|
12
|
Malard F, Huang XJ, Sim JPY. Treatment and unmet needs in steroid-refractory acute graft-versus-host disease. Leukemia 2020; 34:1229-1240. [PMID: 32242050 PMCID: PMC7192843 DOI: 10.1038/s41375-020-0804-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a common complication of allogeneic hematopoietic stem cell transplantation (alloHCT) and is a major cause of morbidity and mortality. Systemic steroid therapy is the first-line treatment for aGVHD, although about half of patients will become refractory to treatment. As the number of patients undergoing alloHCT increases, developing safe and effective treatments for aGVHD will become increasingly important, especially for those whose disease becomes refractory to systemic steroid therapy. This paper reviews current treatment options for patients with steroid-refractory aGVHD and discusses data from recently published clinical studies to outline emerging therapeutic strategies.
Collapse
Affiliation(s)
- Florent Malard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), UMRS_938, AP-HP Hôpital Saint-Antoine, F-75012, Paris, France.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Joycelyn P Y Sim
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| |
Collapse
|
13
|
Whangbo JS, Antin JH, Koreth J. The role of regulatory T cells in graft-versus-host disease management. Expert Rev Hematol 2020; 13:141-154. [PMID: 31874061 DOI: 10.1080/17474086.2020.1709436] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Despite improvements in human leukocyte antigen (HLA) matching algorithms and supportive care, graft-versus-host disease (GVHD) remains the leading cause of non-relapse morbidity and mortality following allogeneic hematopoietic stem cell transplantation (HSCT). Acute GVHD, typically occurring in the first 100 days post-HSCT, is mediated by mature effector T cells from the donor (graft) that become activated after encountering alloantigens in the recipient (host). Chronic GVHD, characterized by aberrant immune responses to both autoantigens and alloantigens, occurs later and arises from a failure to develop tolerance after HSCT. CD4+ CD25+ CD127- FOXP3+ regulatory T cells (Tregs) function to suppress auto- and alloreactive immune responses and are key mediators of immune tolerance.Areas covered: In this review, authors discuss the biologic and therapeutic roles of Tregs in acute and chronic GVHD, including in vivo and ex vivo strategies for Treg expansion and adoptive Treg cellular therapy.Expert opinion: Although they comprise only a small subset of circulating CD4 + T cells, Tregs play an important role in establishing and maintaining immune tolerance following allogeneic HSCT. The development of GVHD has been associated with reduced Treg frequency or numbers. Consequently, the immunosuppressive properties of Tregs are being harnessed in clinical trials for GVHD prevention and treatment.
Collapse
Affiliation(s)
- Jennifer S Whangbo
- Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Joseph H Antin
- Harvard Medical School, Boston, MA, USA.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John Koreth
- Harvard Medical School, Boston, MA, USA.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
14
|
Tang FF, Cheng YF, Xu LP, Zhang XH, Yan CH, Han W, Chen YH, Huang XJ, Wang Y. Basiliximab as Treatment for Steroid-Refractory Acute Graft-versus-Host Disease in Pediatric Patients after Haploidentical Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 26:351-357. [PMID: 31704470 DOI: 10.1016/j.bbmt.2019.10.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 11/25/2022]
Abstract
Basiliximab has been used successfully as a second-line treatment for steroid-refractory (SR) acute graft-versus-host disease (aGVHD) in adult patients after haploidentical hematopoietic stem cell transplant (haplo-HSCT) but has not been studied separately in the pediatric setting. We retrospectively reviewed 100 pediatric patients after haplo-HSCT receiving basiliximab for grades II (57%), III (27%), and IV (16%) SR aGVHD between January 2015 and December 2017. The median number of basiliximab doses was 4 (range, 2 to 9). The day 28 overall response rate was 85%, with complete response in 74% of patients, partial response in 11% of patients, and no response in 15% of patients. The day 28 overall response rates were 94.6% in skin SR aGVHD, 81.6% in gut SR aGVHD, and 66.7% in liver SR aGVHD. Infectious complications included bacterial infection (11%), presumed or documented fungal infections (7%), cytomegalovirus viremia (53%), Epstein-Barr virus viremia (11%), human herpesvirus-6 viremia (7%), and herpes simplex virus viremia (1%). The 3-year overall survival, disease-free survival, nonrelapse mortality, and relapse rates between responders and nonresponders were 81.3% versus 46.7% (P < .001), 79.0% versus 46.7% (P = .001), 6.1% versus 33.3% (P < .001), and 14.9% versus 20.0% (P = .46), respectively. We conclude that basiliximab is an effective second-line agent for pediatric patients with SR aGVHD after haplo-HSCT, particularly for skin SR aGVHD.
Collapse
Affiliation(s)
- Fei-Fei Tang
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yi-Fei Cheng
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wei Han
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Hong Chen
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yu Wang
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Suzhou, China.
| |
Collapse
|
15
|
Axt L, Naumann A, Toennies J, Haen SP, Vogel W, Schneidawind D, Wirths S, Moehle R, Faul C, Kanz L, Axt S, Bethge WA. Retrospective single center analysis of outcome, risk factors and therapy in steroid refractory graft-versus-host disease after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2019; 54:1805-1814. [PMID: 31089279 DOI: 10.1038/s41409-019-0544-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 01/09/2023]
Abstract
Acute and chronic graft-vs.-host disease (aGvHD and cGvHD) are major complications after allogeneic hematopoietic cell transplantation (HCT) leading to substantial morbidity and mortality. This retrospective single-center study analyzes incidence, therapy, and outcome of GvHD in n = 721 patients ≥18 years having received allogeneic HCT 2004-2013 with a special focus on steroid refractory GvHD. Acute (n = 355/49.2%) and chronic (n = 269/37.3%) GvHD were mainly treated by steroids in first-line therapy. The proportion of steroid refractory aGvHD and cGvHD was 35.7% and 31.4%, respectively. As there is no standard therapy for steroid refractory GvHD, a range of different agents was used. In aGvHD, the overall response rate (ORR) of steroid refractory GvHD to second-line treatment was 27.4%. Mycophenolate mofetil (MMF) and mTOR inhibitors led to superior response rates (ORR 50.0% and 53.3%, respectively). In steroid refractory cGvHD therapy, ORR was 44.4%. Use of calcineurin inhibitors (CNI; n = 11/45.5%), MMF (n = 18/50.0%), mTOR inhibitors (n = 10/60.0%), and extracorporeal photophoresis (ECP; n = 16/56.3%) showed ORR above average. Targeted therapies lead to responses in 7.7% (n = 13). This data may help to improve the design of future prospective clinical studies in GvHD.
Collapse
Affiliation(s)
- L Axt
- Department of Hematology and Oncology, Medical Center University Hospital Tuebingen, Tuebingen, Germany
| | - A Naumann
- Institute for Clinical Epidemiology and Applied Biometry, Eberhard-Karl University Tuebingen, Tuebingen, Germany
| | - J Toennies
- Department of Hematology and Oncology, Medical Center University Hospital Tuebingen, Tuebingen, Germany
| | - S P Haen
- Department of Hematology and Oncology, Medical Center University Hospital Tuebingen, Tuebingen, Germany
| | - W Vogel
- Department of Hematology and Oncology, Medical Center University Hospital Tuebingen, Tuebingen, Germany
| | - D Schneidawind
- Department of Hematology and Oncology, Medical Center University Hospital Tuebingen, Tuebingen, Germany
| | - S Wirths
- Department of Hematology and Oncology, Medical Center University Hospital Tuebingen, Tuebingen, Germany
| | - R Moehle
- Department of Hematology and Oncology, Medical Center University Hospital Tuebingen, Tuebingen, Germany
| | - C Faul
- Department of Hematology and Oncology, Medical Center University Hospital Tuebingen, Tuebingen, Germany
| | - L Kanz
- Department of Hematology and Oncology, Medical Center University Hospital Tuebingen, Tuebingen, Germany
| | - S Axt
- Department for Visceral, General and Transplant Surgery, University Hospital Tuebingen, Tuebingen, Germany
| | - W A Bethge
- Department of Hematology and Oncology, Medical Center University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
16
|
Sheng L, Fu H, Tan Y, Hu Y, Mu Q, Luo Y, Shi J, Cai Z, Ouyang G, Huang H. Unusual expansion of CD3+CD56+ natural killer T-like cells in peripheral blood after anticytokine treatment for graft-versus-host disease: A case report. Medicine (Baltimore) 2018; 97:e12429. [PMID: 30235723 PMCID: PMC6160206 DOI: 10.1097/md.0000000000012429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Basiliximab and etanercept have achieved promising responses in steroid-refractory graft versus host disease (SR-GVHD). However, the in vivo immune changes following the treatment have not been elucidated. PATIENT CONCERNS A 14-year-old boy presented with skin rash and diarrhea 20 days after haploidentical hemotopoietic stem cell transplantation. DIAGNOSES We made the diagnose of grade 3 acute GVHD with skin and gastrointestinal involvement. INTERVENTIONS After the failure of the first-line treatment with methylprednisolone, combined anti-cytokine therapies with basiliximab and etanercept were prescibed. OUTCOMES He achieved complete remission by basiliximab and etanercept. Furthermore, we detected that donor CD3CD56 Natural killer T(NKT)-like cells expanded gradually after the period of lymphocytopenia caused by GVHD and anti-cytokine therapy. The expansion of NKT-like cells was in association with high serum IFN-γ. NKT-like cells showed preferred proliferation in response to IFN-γ and potent cytotoxicity against leukemia cells. The expansion persisted > 2 years and the patient had a leukemia-free survival of 66 months. LESSONS Our case indicated that combined anti-cytokine treatment may reset the immune system and cause NKT-like cells to exhibit a predilection for expansion.
Collapse
Affiliation(s)
- Lixia Sheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang Province, China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
| | - Yamin Tan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
| | - Qitian Mu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang Province, China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
| | - Jianmin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang Province, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
| |
Collapse
|
17
|
Tan Y, Xiao H, Wu D, Luo Y, Lan J, Liu Q, Yu K, Shi J, He J, Zheng W, Lai X, Zhu Y, Du K, Ye Y, Zhao Y, Zheng G, Hu Y, Han X, Zheng Y, Wei G, Cai Z, Huang H. Combining therapeutic antibodies using basiliximab and etanercept for severe steroid-refractory acute graft-versus-host disease: A multi-center prospective study. Oncoimmunology 2017; 6:e1277307. [PMID: 28405499 DOI: 10.1080/2162402x.2016.1277307] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022] Open
Abstract
Acute graft versus host disease (aGVHD) remains a major problem after allogeneic hematopoietic stem cell transplantation. Standard frontline therapy for aGVHD involves corticosteroids. However, fewer than half of patients have a lasting complete response. The long-term mortality rate of steroid-refractory aGVHD (SR-aGVHD) remains around 70%. To date, no consensus has been reached regarding the optimal salvage treatment for SR-aGVHD. We performed the first prospective, multi-center clinical trial to assess the efficacy and safety of a novel approach to treat severe (grades III-IV) SR-aGVHD with the combination of basiliximab and etanercept. Sixty-five patients with severe SR-aGVHD from six centers were included. The median number of basiliximab infusions was 4 (range 2-11) and of etanercept was 9 (range 2-12). At day 28 after starting the combination treatment, overall response (complete and partial response: CR+PR) to second-line treatment was 90.8% with 75.4% being CR. The incidences of CR per organ were 100%, 73.8%, and 79.7% for skin, liver, and gut involvement, respectively. Patients >30-y old (p = 0.043, RR = 3.169), development of grades III-IV liver aGVHD (p = 0.007, RR = 5.034) and cytomegalovirus (CMV) reactivation (p = 0.035, RR = 4.02) were independent predictors for incomplete response. Combined treatment with basiliximab and etanercept resulted in improved CR to visceral aGVHD and significantly superior 2-y overall survival (54.7% vs. 14.8%, p <0.001) compared with classical salvage treatments. Our data suggest that the combination of basiliximab and etanercept may constitute a promising new treatment option for SR-aGVHD.
Collapse
Affiliation(s)
- Yamin Tan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - Haowen Xiao
- Department of Hematology, Guangzhou General Hospital of Guangzhou Military Command (Guangzhou Liuhuaqiao Hospital) , Guangzhou, Guangdong Province, P.R. China
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province, P.R. China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - Jianping Lan
- Department of Hematology, Zhejiang Provincial People's Hospital , Hangzhou, Zhejiang Province, P.R. China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital of Southern Medical University , Guangzhou, Guangdong Province, P.R. China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang Province, P.R. China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - Yuanyuan Zhu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - Kaili Du
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - Gaofeng Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - Xiaoyan Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - Yanlong Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
18
|
Jia H, Zhao T, Ji Y, Jia X, Ren W, Li C, Li M, Xiao Y, Wang H, Xu K. Combined nifuroxazide and SAT05f therapy reduces graft-versus-host disease after experimental allogeneic bone marrow transplantation. Cell Death Dis 2016; 7:e2507. [PMID: 27906171 PMCID: PMC5261008 DOI: 10.1038/cddis.2016.399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 01/10/2023]
Abstract
Acute graft-versus-host disease (aGvHD) is the major barrier to the broader use of allogenetic hematopoietic stem cells. However, currently these are no highly specific and efficient drugs. Monotherapy is not sufficient and more efficient and safe therapeutic regimen are urgent need. Studies demonstrated TLR9 and Stat3 signal pathways are critical for antigen-presenting cell maturation and T-cell activation, which are important mediators in aGvHD. Specific block these two critical signal pathways using their inhibitors SAT05f and nifuroxazide may be the novel strategies for aGvHD therapy. The results showed combined therapy significantly decreased the severity of aGvHD and prolonged the survival rate. Furthermore, after treatment, the activation of CD4+ effect T cells was reduced, whereas Treg cells was increased, and the cytokine release was inhibited. In conclusion, combined therapy of nifuroxazide with SAT05f may be potential for the prevention or treatment of aGvHD, providing theoretic and experimental basis.
Collapse
Affiliation(s)
- Huijie Jia
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Tiesuo Zhao
- Research Center for Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yinghua Ji
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Xiaolong Jia
- Research Center for Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Wenjing Ren
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Chen Li
- Research Center for Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Minming Li
- Research Center for Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yali Xiao
- Research Center for Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Hui Wang
- Research Center for Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Kailin Xu
- Laboratory of Transplantation and Immunology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| |
Collapse
|