1
|
Hernando-Calvo A, Nguyen P, Bedard PL, Chan KK, Saleh RR, Weymann D, Yu C, Amir E, Regier DA, Gyawali B, Kain D, Wilson B, Earle CC, Mittmann N, Abdul Razak AR, Isaranuwatchai W, Sabatini P, Spreafico A, Stockley TL, Pugh TJ, Williams C, Siu LL, Hanna TP. Impact on costs and outcomes of multi-gene panel testing for advanced solid malignancies: a cost-consequence analysis using linked administrative data. EClinicalMedicine 2024; 69:102443. [PMID: 38380071 PMCID: PMC10876574 DOI: 10.1016/j.eclinm.2024.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Background To date, economic analyses of tissue-based next generation sequencing genomic profiling (NGS) for advanced solid tumors have typically required models with assumptions, with little real-world evidence on overall survival (OS), clinical trial enrollment or end-of-life quality of care. Methods Cost consequence analysis of NGS testing (555 or 161-gene panels) for advanced solid tumors through the OCTANE clinical trial (NCT02906943). This is a longitudinal, propensity score-matched retrospective cohort study in Ontario, Canada using linked administrative data. Patients enrolled in OCTANE at Princess Margaret Cancer Centre from August 2016 until March 2019 were matched with contemporary patients without large gene panel testing from across Ontario not enrolled in OCTANE. Patients were matched according to 19 patient, disease and treatment variables. Full 2-year follow-up data was available. Sensitivity analyses considered alternative matched cohorts. Main Outcomes were mean per capita costs (2019 Canadian dollars) from a public payer's perspective, OS, clinical trial enrollment and end-of-life quality metrics. Findings There were 782 OCTANE patients with 782 matched controls. Variables were balanced after matching (standardized difference <0.10). There were higher mean health-care costs with OCTANE ($79,702 vs. $59,550), mainly due to outpatient and specialist visits. Publicly funded drug costs were less with OCTANE ($20,015 vs. $24,465). OCTANE enrollment was not associated with improved OS (restricted mean survival time [standard error]: 1.50 (±0.03) vs. 1.44 (±0.03) years, log-rank p = 0.153), varying by tumor type. In five tumor types with ≥35 OCTANE patients, OS was similar in three (breast, colon, uterus, all p > 0.40), and greater in two (ovary, biliary, both p < 0.05). OCTANE was associated with greater clinical trial enrollment (25.4% vs. 9.5%, p < 0.001) and better end-of-life quality due to less death in hospital (10.2% vs. 16.4%, p = 0.003). Results were robust in sensitivity analysis. Interpretation We found an increase in healthcare costs associated with multi-gene panel testing for advanced cancer treatment. The impact on OS was not significant, but varied across tumor types. OCTANE was associated with greater trial enrollment, lower publicly funded drug costs and fewer in-hospital deaths suggesting important considerations in determining the value of NGS panel testing for advanced cancers. Funding T.P H holds a research grant provided by the Ontario Institute for Cancer Research through funding provided by the Government of Ontario (#IA-035 and P.HSR.158) and through funding of the Canadian Network for Learning Healthcare Systems and Cost-Effective 'Omics Innovation (CLEO) via Genome Canada (G05CHS).
Collapse
Affiliation(s)
- Alberto Hernando-Calvo
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Paul Nguyen
- ICES Queen's. Queen's University, Kingston, ON, Canada
| | - Philippe L. Bedard
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kelvin K.W. Chan
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Ramy R. Saleh
- Department of Medical Oncology, McGill University Health Centre, Montreal, QC, Canada
| | | | - Celeste Yu
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Eitan Amir
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dean A. Regier
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Bishal Gyawali
- Department of Oncology, Queen's University, Kingston, ON, Canada
- Division of Cancer Care and Epidemiology, Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Danielle Kain
- Department of Oncology, Queen's University, Kingston, ON, Canada
| | - Brooke Wilson
- Department of Oncology, Queen's University, Kingston, ON, Canada
- Division of Cancer Care and Epidemiology, Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Craig C. Earle
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Nicole Mittmann
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Albiruni R. Abdul Razak
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wanrudee Isaranuwatchai
- St. Michael's Hospital Centre for Excellence in Economic Analysis Research, University of Toronto, Toronto, ON, Canada
| | - Peter Sabatini
- Advanced Molecular Diagnostic Laboratory, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tracy L. Stockley
- Advanced Molecular Diagnostic Laboratory, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Trevor J. Pugh
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Lillian L. Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Timothy P. Hanna
- ICES Queen's. Queen's University, Kingston, ON, Canada
- Department of Oncology, Queen's University, Kingston, ON, Canada
- Division of Cancer Care and Epidemiology, Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| |
Collapse
|