1
|
Contextual memory reactivation modulates Ca2+-activity network state in a mushroom body-like center of the crab N. granulata. Sci Rep 2022; 12:11408. [PMID: 35794138 PMCID: PMC9259570 DOI: 10.1038/s41598-022-15502-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
High-order brain centers play key roles in sensory integration and cognition. In arthropods, much is known about the insect high-order centers that support associative memory processes, the mushroom bodies. The hypothesis that crustaceans possess structures equivalent to the mushroom bodies -traditionally called hemiellipsoid body- has been receiving neuroanatomical endorsement. The recent functional support is limited to the short term: in a structure of the true crab Neohelice granulata that has many insect-like mushroom bodies traits, the plastic learning changes express the context attribute of an associative memory trace. Here, we used in vivo calcium imaging to test whether neuronal activity in this structure is associated with memory reactivation in the long-term (i.e., 24 h after training). Long-term training effects were tested by presenting the training-context alone, a reminder known to trigger memory reconsolidation. We found similar spontaneous activity between trained and naïve animals. However, after training-context presentation, trained animals showed increased calcium events rate, suggesting that memory reactivation induced a change in the underlying physiological state of this center. Reflecting the change in the escape response observed in the paradigm, animals trained with a visual danger stimulus showed significantly lower calcium-evoked transients in the insect-like mushroom body. Protein synthesis inhibitor cycloheximide administered during consolidation prevented calcium mediated changes. Moreover, we found the presence of distinct calcium activity spatial patterns. Results suggest that intrinsic neurons of this crustacean mushroom body-like center are involved in contextual associative long-term memory processes.
Collapse
|
2
|
Identification of a Novel Retrieval-dependent Memory Process in the Crab Neohelice granulata. Neuroscience 2020; 448:149-159. [PMID: 32979399 DOI: 10.1016/j.neuroscience.2020.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 01/22/2023]
Abstract
Fully consolidated associative memories may be altered by alternative retrieval dependent memory processes. While a brief exposure to the conditioned stimulus (CS) can trigger reconsolidation of the original memory, a prolonged CS exposure will trigger memory extinction. The conditioned response is maintained after reconsolidation, but is inhibited after extinction, presumably by the formation of a new inhibitory memory trace. In rats and humans, it has been shown that CS exposure of intermediate duration leave the memory in an insensitive or limbo state. Limbo is characterised by the absence of reconsolidation or extinction. Here we investigated the evolutionary conserved nature of limbo using a contextual Pavlovian conditioning (CPC) memory paradigm in the crab Neohelice granulata. In animals with fully consolidated CPC memory, systemic administration of the protein synthesis inhibitor cycloheximide after 1 CS presentation disrupted the memory, presumably by interfering with memory reconsolidation. The same intervention given after 320 CSs prevented CPC memory extinction. Cycloheximide had no behavioural effect when administered after 80 CS presentations, a protocol that failed to extinguish CPC memory. Also, we observed that a stronger CPC memory engaged reconsolidation after 80 CS instead of limbo, indicating that memory strength affects the parametrical conditions to engage either reconsolidation or limbo. Altogether, these results indicate that limbo is an evolutionary conserved memory process segregating reconsolidation from extinction in the number of CSs space. Limbo appears as an intrinsic component of retrieval dependent memory processing, with a key function in the transition from memory maintenance to inhibition.
Collapse
|
3
|
Gonzalez H, Bloise L, Maza FJ, Molina VA, Delorenzi A. Memory built in conjunction with a stressor is privileged: Reconsolidation-resistant memories in the crab Neohelice. Brain Res Bull 2020; 157:108-118. [PMID: 32017969 DOI: 10.1016/j.brainresbull.2020.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 11/27/2022]
Abstract
The dynamics of memory processes are conserved throughout evolution, a feature based on the hypothesis of a common origin of the high-order memory centers in bilateral animals. Reconsolidation is just one example. The possibility to interfere with long-term memory expression during reconsolidation has been proposed as potentially useful in clinical application to treat traumatic memories. However, several pieces of evidence in rodents show that either robust fear memories or stressful events applied before acquisition promote reconsolidation-resistant memories, i.e., memories that are resistant to the interfering effect of drugs on memory reconsolidation. Conceivably, the generation of these reconsolidation-resistant fear memories also occurs in humans. Is the induction of reconsolidation-resistant memories part of the dynamics of memory processes conserved throughout evolution? In the semiterrestrial crab Neohelice granulata, memory reconsolidation is triggered by a short reminder without reinforcement. Here, we show that an increase in the salience of the aversive stimulus augmented the memory strength; nonetheless, the protein synthesis inhibitor cycloheximide still disrupted the reconsolidation process. However, crabs stressed by a water-deprivation episode before a strong training session built up a memory that was now reconsolidation-resistant. We tested whether these reconsolidation-resistant effects can be challenged by changing parametric conditions of memory-reminder sessions; multiple memory reactivations without reinforcement were not able to trigger the labilization-reconsolidation of this resistant memory. Overall, the present findings suggest that generation of reconsolidation-resistant memories can be another part of the dynamics of memory processes conserved throughout evolution that protects privileged information from change.
Collapse
Affiliation(s)
- Heidi Gonzalez
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Leonardo Bloise
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Francisco J Maza
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Víctor A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, IFEC-CONICET-Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.
| | - Alejandro Delorenzi
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| |
Collapse
|
4
|
Fernández RS, Moyano MD, Radloff M, Campos J, Carbó-Tano M, Allegri RF, Pedreira ME, Forcato C. The role of GABA A in the expression of updated information through the reconsolidation process in humans. Neurobiol Learn Mem 2017; 142:146-153. [PMID: 28347877 DOI: 10.1016/j.nlm.2017.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/06/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022]
Abstract
Consolidated memory can be again destabilized by the presentation of a memory cue (reminder) of the previously acquired information. During this process of labilization/restabilization memory traces can be either impaired, strengthened or updated in content. Here, we study if a consolidated memory can be updated by linking one original cue to two different outcomes and whether this process was modulated by the GABAergic system. To aim that, we designed two experiments carried out in three consecutive days. All participants learned a list of non-sense syllable pairs on day 1. On day 2 the new information was introduced after the reminder or no-reminder presentation. Participants were tested on day 3 for the updated or original list (Exp. 1). In Exp. 2 we tested whether this new information was incorporated by an inhibitory process mediated by the GABAergic system. For that, participants retrieved the original information before being taken Clonazepam 0.25mg (GABAA agonist) or Placebo pill. We found that the groups that received the reminder correctly recalled the old and new information. However, the no reminder groups only correctly recalled the original information. Furthermore, when testing occurred in the presence of Clonazepam, the group that received the reminder plus the new information showed an impaired original memory performance compared to the group that received only Clonazepam (without reminder) or the reminder plus Placebo pill. These results show that new information can be added to a reactivated declarative memory in humans by linking one cue to two different outcomes. Furthermore, we shed light on the mechanisms of memory updating being the GABAergic system involved in the modulation of the old and new information expression.
Collapse
Affiliation(s)
- Rodrigo S Fernández
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Argentina; CONICET-Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Malen D Moyano
- Unidad Ejecutora de Estudios de Neurociencias y Sistemas Complejos, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional Arturo Jauretche, Hospital de Alta Complejidad en Red El Cruce "Néstor Kirchner", Florencio Varela, Argentina
| | - Michael Radloff
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Argentina; CONICET-Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Jorge Campos
- Departamento de Neurología Cognitiva, Instituto de Investigaciones Neurológicas Raúl Carrea, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Martin Carbó-Tano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Argentina; CONICET-Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Ricardo F Allegri
- Departamento de Neurología Cognitiva, Instituto de Investigaciones Neurológicas Raúl Carrea, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - María E Pedreira
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Argentina; CONICET-Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Cecilia Forcato
- Unidad Ejecutora de Estudios de Neurociencias y Sistemas Complejos, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional Arturo Jauretche, Hospital de Alta Complejidad en Red El Cruce "Néstor Kirchner", Florencio Varela, Argentina.
| |
Collapse
|
5
|
Different dimensions of the prediction error as a decisive factor for the triggering of the reconsolidation process. Neurobiol Learn Mem 2016; 136:210-219. [PMID: 27815213 DOI: 10.1016/j.nlm.2016.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022]
Abstract
The reconsolidation process is the mechanism by which strength and/or content of consolidated memories are updated. Prediction error (PE) is the difference between the prediction made and current events. It is proposed as a necessary condition to trigger the reconsolidation process. Here we analyzed deeply the role of the PE in the associative memory reconsolidation in the crab Neohelice granulata. An incongruence between the learned temporal relationship between conditioned and unconditioned stimuli (CS-US) was enough to trigger the reconsolidation process. Moreover, after a partial reinforced training, a PE of 50% opened the possibility to labilize the consolidated memory with a reminder which included or not the US. Further, during an extinction training a small PE in the first interval between CSs was enough to trigger reconsolidation. Overall, we highlighted the relation between training history and different reactivation possibilities to recruit the process responsible of memory updating.
Collapse
|
6
|
Visual motion processing subserving behavior in crabs. Curr Opin Neurobiol 2016; 41:113-121. [PMID: 27662055 DOI: 10.1016/j.conb.2016.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/07/2016] [Accepted: 09/05/2016] [Indexed: 11/23/2022]
Abstract
Motion vision originated during the Cambrian explosion more than 500 million years ago, likely triggered by the race for earliest detection between preys and predators. To successfully evade a predator's attack a prey must react quickly and reliably, which imposes a common constrain to the implementation of escape responses among different species. Thus, neural circuits subserving fast escape responses are usually straightforward and contain giant neurons. This review summarizes knowledge about a small group of motion-sensitive giant neurons thought to be central in guiding the escape performance of crabs to visual stimuli. The flexibility of the escape behavior contrasts with the stiffness of the optomotor response, indicating a task-dependent early segregation of visual pathways.
Collapse
|
7
|
Hepp Y, Salles A, Carbo-Tano M, Pedreira ME, Freudenthal R. Surface expression of NMDA receptor changes during memory consolidation in the crab Neohelice granulata. ACTA ACUST UNITED AC 2016; 23:427-34. [PMID: 27421895 PMCID: PMC4947233 DOI: 10.1101/lm.041707.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/25/2016] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab Neohelice granulata Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of N-methyl-D aspartate receptor (NMDAR)-dependent changes in strength, a process that affects the abundance of other receptors at the synapse and underlies some forms of learning and memory. Here we propose a direct regulation of the NMDAR. Changes in NMDAR's functionality might be induced by the modification of the subunit's expression or cellular trafficking. This trafficking does not only include NMDAR's movement between synaptic and extra-synaptic localizations but also the cycling between intracellular compartments and the plasma membrane, a process called surface expression. Consolidation of contextual learning affects the surface expression of the receptor without affecting its general expression. The surface expression of the GluN1 subunit of the NMDAR is down-regulated immediately after training, up-regulated 3 h after training and returns to naïve and control levels 24 h after training. The changes in NMDAR surface expression observed in the central brain are not seen in the thoracic ganglion. A similar increment in surface expression of GluN1 in the central brain is observed 3 h after administration of the competitive GABAA receptor antagonist, bicuculline. These consolidation changes are part of a plasticity event that first, during the down-regulation, stabilizes the trace and later, at 3-h post-training, changes the threshold for synapse activation.
Collapse
Affiliation(s)
- Yanil Hepp
- Laboratorio de Neurobiología de la Memoria, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires, IFIBYNE, CONICET. Pab. II, 2° piso, Int. Güiraldes 2160, CP 1428, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Angeles Salles
- Laboratorio de Neurobiología de la Memoria, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires, IFIBYNE, CONICET. Pab. II, 2° piso, Int. Güiraldes 2160, CP 1428, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martin Carbo-Tano
- Laboratorio de Neurobiología de la Memoria, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires, IFIBYNE, CONICET. Pab. II, 2° piso, Int. Güiraldes 2160, CP 1428, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Eugenia Pedreira
- Laboratorio de Neurobiología de la Memoria, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires, IFIBYNE, CONICET. Pab. II, 2° piso, Int. Güiraldes 2160, CP 1428, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ramiro Freudenthal
- Laboratorio de Neurobiología de la Memoria, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires, IFIBYNE, CONICET. Pab. II, 2° piso, Int. Güiraldes 2160, CP 1428, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|