1
|
Vitry S, Mendia C, Maudoux A, El-Amraoui A. Advancing precision ear medicine: leveraging animal models for disease insights and therapeutic innovations. Mamm Genome 2025:10.1007/s00335-025-10126-y. [PMID: 40263131 DOI: 10.1007/s00335-025-10126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Gene therapy offers significant promise for treating inner ear disorders, but its clinical translation requires robust preclinical validation, often reliant on animal models. This review examines the role of these models in advancing gene therapeutics for inherited inner ear disorders, focusing on successes, challenges, and treatment solutions. By providing a precise understanding of disease mechanisms, these models offer a versatile preclinical platform that is essential for assessing and validating therapies. Successful gene supplementation and editing have shown potential in restoring hearing and balance functions and preventing their decline. However, challenges such as limitations in gene delivery methods, surgical access, immune responses, and discrepancies in disease manifestation between animal models and humans hinder clinical translation. Current efforts are dedicated to developing innovative strategies aimed at enhancing the efficiency of gene delivery, overcoming physical barriers such as the blood-labyrinth barrier, improving target specificity, and maximizing therapeutic efficacy while minimizing adverse immune responses. Diverse gene supplementation and editing strategies, along with evolving technologies, hold promise for maximizing therapeutic outcomes using disease relevant models. The future of inner ear gene therapeutics will hinge on personalized therapies and team science fueling interdisciplinary collaborations among researchers, clinicians, companies, and regulatory agencies to expedite the translation from bench to bedside and unlock the immense potential of precision medicine in the inner ear.
Collapse
Affiliation(s)
- Sandrine Vitry
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France.
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Paris, France.
| | - Clara Mendia
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France
- Collège Doctoral, Sorbonne Université, 75005, Paris, France
| | - Audrey Maudoux
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France
- Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert Debré University Hospital-APHP, Paris, France
| | - Aziz El-Amraoui
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France.
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Paris, France.
| |
Collapse
|
2
|
San Martín VP, Sazo A, Utreras E, Moraga-Cid G, Yévenes GE. Glycine Receptor Subtypes and Their Roles in Nociception and Chronic Pain. Front Mol Neurosci 2022; 15:848642. [PMID: 35401105 PMCID: PMC8984470 DOI: 10.3389/fnmol.2022.848642] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/28/2022] [Indexed: 01/23/2023] Open
Abstract
Disruption of the inhibitory control provided by the glycinergic system is one of the major mechanisms underlying chronic pain. In line with this concept, recent studies have provided robust proof that pharmacological intervention of glycine receptors (GlyRs) restores the inhibitory function and exerts anti-nociceptive effects on preclinical models of chronic pain. A targeted regulation of the glycinergic system requires the identification of the GlyR subtypes involved in chronic pain states. Nevertheless, the roles of individual GlyR subunits in nociception and in chronic pain are yet not well defined. This review aims to provide a systematic outline on the contribution of GlyR subtypes in chronic pain mechanisms, with a particular focus on molecular pathways of spinal glycinergic dis-inhibition mediated by post-translational modifications at the receptor level. The current experimental evidence has shown that phosphorylation of synaptic α1β and α3β GlyRs are involved in processes of spinal glycinergic dis-inhibition triggered by chronic inflammatory pain. On the other hand, the participation of α2-containing GlyRs and of β subunits in pain signaling have been less studied and remain undefined. Although many questions in the field are still unresolved, future progress in GlyR research may soon open new exciting avenues into understanding and controlling chronic pain.
Collapse
Affiliation(s)
- Victoria P. San Martín
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Anggelo Sazo
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Elías Utreras
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Gonzalo E. Yévenes
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- *Correspondence: Gonzalo E. Yévenes,
| |
Collapse
|
3
|
Kitcher SR, Pederson AM, Weisz CJC. Diverse identities and sites of action of cochlear neurotransmitters. Hear Res 2021; 419:108278. [PMID: 34108087 DOI: 10.1016/j.heares.2021.108278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022]
Abstract
Accurate encoding of acoustic stimuli requires temporally precise responses to sound integrated with cellular mechanisms that encode the complexity of stimuli over varying timescales and orders of magnitude of intensity. Sound in mammals is initially encoded in the cochlea, the peripheral hearing organ, which contains functionally specialized cells (including hair cells, afferent and efferent neurons, and a multitude of supporting cells) to allow faithful acoustic perception. To accomplish the demanding physiological requirements of hearing, the cochlea has developed synaptic arrangements that operate over different timescales, with varied strengths, and with the ability to adjust function in dynamic hearing conditions. Multiple neurotransmitters interact to support the precision and complexity of hearing. Here, we review the location of release, action, and function of neurotransmitters in the mammalian cochlea with an emphasis on recent work describing the complexity of signaling.
Collapse
Affiliation(s)
- Siân R Kitcher
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Alia M Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
4
|
Fulop DB, Humli V, Szepesy J, Ott V, Reglodi D, Gaszner B, Nemeth A, Szirmai A, Tamas L, Hashimoto H, Zelles T, Tamas A. Hearing impairment and associated morphological changes in pituitary adenylate cyclase activating polypeptide (PACAP)-deficient mice. Sci Rep 2019; 9:14598. [PMID: 31601840 PMCID: PMC6787024 DOI: 10.1038/s41598-019-50775-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a regulatory and cytoprotective neuropeptide, its deficiency implies accelerated aging in mice. It is present in the auditory system having antiapoptotic effects. Expression of Ca2+-binding proteins and its PAC1 receptor differs in the inner ear of PACAP-deficient (KO) and wild-type (WT) mice. Our aim was to elucidate the functional role of PACAP in the auditory system. Auditory brainstem response (ABR) tests found higher hearing thresholds in KO mice at click and low frequency burst stimuli. Hearing impairment at higher frequencies showed as reduced ABR wave amplitudes and latencies in KO animals. Increase in neuronal activity, demonstrated by c-Fos immunolabeling, was lower in KO mice after noise exposure in the ventral and dorsal cochlear nuclei. Noise induced neuronal activation was similar in further relay nuclei of the auditory pathway of WT and KO mice. Based on the similar inflammatory and angiogenic protein profile data from cochlear duct lysates, neither inflammation nor disturbed angiogenesis, as potential pathological components in sensorineural hearing losses, seem to be involved in the pathomechanism of the presented functional and morphological changes in PACAP KO mice. The hearing impairment is probably concomitant with the markedly accelerated aging processes in these animals.
Collapse
Affiliation(s)
- Daniel Balazs Fulop
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Viktoria Humli
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Virag Ott
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Adrienn Nemeth
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary.,Department of Otorhinolaryngology, University of Pecs Medical School, Pecs, Hungary
| | - Agnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Laszlo Tamas
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, Japan
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary. .,Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary.
| |
Collapse
|
5
|
Leacock S, Syed P, James VM, Bode A, Kawakami K, Keramidas A, Suster M, Lynch JW, Harvey RJ. Structure/Function Studies of the α4 Subunit Reveal Evolutionary Loss of a GlyR Subtype Involved in Startle and Escape Responses. Front Mol Neurosci 2018; 11:23. [PMID: 29445326 PMCID: PMC5797729 DOI: 10.3389/fnmol.2018.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/16/2018] [Indexed: 01/08/2023] Open
Abstract
Inhibitory glycine receptors (GlyRs) are pentameric ligand-gated anion channels with major roles in startle disease/hyperekplexia (GlyR α1), cortical neuronal migration/autism spectrum disorder (GlyR α2), and inflammatory pain sensitization/rhythmic breathing (GlyR α3). However, the role of the GlyR α4 subunit has remained enigmatic, because the corresponding human gene (GLRA4) is thought to be a pseudogene due to an in-frame stop codon at position 390 within the fourth membrane-spanning domain (M4). Despite this, a recent genetic study has implicated GLRA4 in intellectual disability, behavioral problems and craniofacial anomalies. Analyzing data from sequenced genomes, we found that GlyR α4 subunit genes are predicted to be intact and functional in the majority of vertebrate species—with the exception of humans. Cloning of human GlyR α4 cDNAs excluded alternative splicing and RNA editing as mechanisms for restoring a full-length GlyR α4 subunit. Moreover, artificial restoration of the missing conserved arginine (R390) in the human cDNA was not sufficient to restore GlyR α4 function. Further bioinformatic and mutagenesis analysis revealed an additional damaging substitution at K59 that ablates human GlyR α4 function, which is not present in other vertebrate GlyR α4 sequences. The substitutions K59 and X390 were also present in the genome of an ancient Denisovan individual, indicating that GLRA4 has been a pseudogene for at least 30,000–50,000 years. In artificial synapses, we found that both mouse and gorilla α4β GlyRs mediate synaptic currents with unusually slow decay kinetics. Lastly, to gain insights into the biological role of GlyR α4 function, we studied the duplicated genes glra4a and glra4b in zebrafish. While glra4b expression is restricted to the retina, using a novel tol2-GAL4FF gene trap line (SAIGFF16B), we found that the zebrafish GlyR α4a subunit gene (glra4a) is strongly expressed in spinal cord and hindbrain commissural neurones. Using gene knockdown and a dominant-negative GlyR α4aR278Q mutant, we found that GlyR α4a contributes to touch-evoked escape behaviors in zebrafish. Thus, although GlyR α4 is unlikely to be involved in human startle responses or disease states, this subtype may contribute to escape behaviors in other organisms.
Collapse
Affiliation(s)
- Sophie Leacock
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Parnayan Syed
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Victoria M James
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Anna Bode
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics and Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Robert J Harvey
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| |
Collapse
|
6
|
Zeilhofer HU, Acuña MA, Gingras J, Yévenes GE. Glycine receptors and glycine transporters: targets for novel analgesics? Cell Mol Life Sci 2018; 75:447-465. [PMID: 28791431 PMCID: PMC11105467 DOI: 10.1007/s00018-017-2622-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 08/04/2017] [Indexed: 01/29/2023]
Abstract
Glycinergic neurotransmission has long been known for its role in spinal motor control. During the last two decades, additional functions have become increasingly recognized-among them is a critical contribution to spinal pain processing. Studies in rodent pain models provide proof-of-concept evidence that enhancing inhibitory glycinergic neurotransmission reduces chronic pain symptoms. Apparent strategies for pharmacological intervention include positive allosteric modulators of glycine receptors and modulators or inhibitors of the glial and neuronal glycine transporters GlyT1 and GlyT2. These prospects have led to drug discovery efforts in academia and in industry aiming at compounds that target glycinergic neurotransmission with high specificity. Available data show promising analgesic efficacy. Less is currently known about potential unwanted effects but the presence of glycinergic innervation in CNS areas outside the nociceptive system prompts for a careful evaluation not only of motor function, but also of potential respiratory impairment and addictive properties.
Collapse
Affiliation(s)
- Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Gonzalo E Yévenes
- Department of Physiology, University of Concepción, Concepción, Chile
| |
Collapse
|
7
|
Lauer AM, Behrens D, Klump G. Acoustic startle modification as a tool for evaluating auditory function of the mouse: Progress, pitfalls, and potential. Neurosci Biobehav Rev 2017; 77:194-208. [PMID: 28327385 PMCID: PMC5446932 DOI: 10.1016/j.neubiorev.2017.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/23/2017] [Accepted: 03/13/2017] [Indexed: 12/16/2022]
Abstract
Acoustic startle response (ASR) modification procedures, especially prepulse inhibition (PPI), are increasingly used as behavioral measures of auditory processing and sensorimotor gating in rodents due to their perceived ease of implementation and short testing times. In practice, ASR and PPI procedures are extremely variable across animals, experimental setups, and studies, and the interpretation of results is subject to numerous caveats and confounding influences. We review considerations for modification of the ASR using acoustic stimuli, and we compare the sensitivity of PPI procedures to more traditional operant psychoacoustic techniques. We also discuss non-auditory variables that must be considered. We conclude that ASR and PPI measures cannot substitute for traditional operant techniques due to their low sensitivity. Additionally, a substantial amount of pilot testing must be performed to properly optimize an ASR modification experiment, negating any time benefit over operant conditioning. Nevertheless, there are some circumstances where ASR measures may be the only option for assessing auditory behavior, such as when testing mouse strains with early-onset hearing loss or learning impairments.
Collapse
Affiliation(s)
- Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, 515 Traylor Building, 720 Rutland Ave., Baltimore, MD 21205, USA.
| | - Derik Behrens
- Cluster of Excellence Hearing4all, Animal Physiology & Behavior Group, Department for Neuroscience, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Carl Von Ossietzky Str. 9-11, 26111 Oldenburg, Germany
| | - Georg Klump
- Cluster of Excellence Hearing4all, Animal Physiology & Behavior Group, Department for Neuroscience, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Carl Von Ossietzky Str. 9-11, 26111 Oldenburg, Germany
| |
Collapse
|
8
|
Redefining progressive encephalomyelitis with rigidity and myoclonus after the discovery of antibodies to glycine receptors. Curr Opin Neurol 2017; 30:310-316. [DOI: 10.1097/wco.0000000000000450] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|