1
|
Mysin I, Shubina L. Hippocampal non-theta state: The "Janus face" of information processing. Front Neural Circuits 2023; 17:1134705. [PMID: 36960401 PMCID: PMC10027749 DOI: 10.3389/fncir.2023.1134705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
The vast majority of studies on hippocampal rhythms have been conducted on animals or humans in situations where their attention was focused on external stimuli or solving cognitive tasks. These studies formed the basis for the idea that rhythmical activity coordinates the work of neurons during information processing. However, at rest, when attention is not directed to external stimuli, brain rhythms do not disappear, although the parameters of oscillatory activity change. What is the functional load of rhythmical activity at rest? Hippocampal oscillatory activity during rest is called the non-theta state, as opposed to the theta state, a characteristic activity during active behavior. We dedicate our review to discussing the present state of the art in the research of the non-theta state. The key provisions of the review are as follows: (1) the non-theta state has its own characteristics of oscillatory and neuronal activity; (2) hippocampal non-theta state is possibly caused and maintained by change of rhythmicity of medial septal input under the influence of raphe nuclei; (3) there is no consensus in the literature about cognitive functions of the non-theta-non-ripple state; and (4) the antagonistic relationship between theta and delta rhythms observed in rodents is not always observed in humans. Most attention is paid to the non-theta-non-ripple state, since this aspect of hippocampal activity has not been investigated properly and discussed in reviews.
Collapse
|
2
|
Braun W, Memmesheimer RM. High-frequency oscillations and sequence generation in two-population models of hippocampal region CA1. PLoS Comput Biol 2022; 18:e1009891. [PMID: 35176028 PMCID: PMC8890743 DOI: 10.1371/journal.pcbi.1009891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/02/2022] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
Abstract
Hippocampal sharp wave/ripple oscillations are a prominent pattern of collective activity, which consists of a strong overall increase of activity with superimposed (140 − 200 Hz) ripple oscillations. Despite its prominence and its experimentally demonstrated importance for memory consolidation, the mechanisms underlying its generation are to date not understood. Several models assume that recurrent networks of inhibitory cells alone can explain the generation and main characteristics of the ripple oscillations. Recent experiments, however, indicate that in addition to inhibitory basket cells, the pattern requires in vivo the activity of the local population of excitatory pyramidal cells. Here, we study a model for networks in the hippocampal region CA1 incorporating such a local excitatory population of pyramidal neurons. We start by investigating its ability to generate ripple oscillations using extensive simulations. Using biologically plausible parameters, we find that short pulses of external excitation triggering excitatory cell spiking are required for sharp/wave ripple generation with oscillation patterns similar to in vivo observations. Our model has plausible values for single neuron, synapse and connectivity parameters, random connectivity and no strong feedforward drive to the inhibitory population. Specifically, whereas temporally broad excitation can lead to high-frequency oscillations in the ripple range, sparse pyramidal cell activity is only obtained with pulse-like external CA3 excitation. Further simulations indicate that such short pulses could originate from dendritic spikes in the apical or basal dendrites of CA1 pyramidal cells, which are triggered by coincident spike arrivals from hippocampal region CA3. Finally we show that replay of sequences by pyramidal neurons and ripple oscillations can arise intrinsically in CA1 due to structured connectivity that gives rise to alternating excitatory pulse and inhibitory gap coding; the latter denotes phases of silence in specific basket cell groups, which induce selective disinhibition of groups of pyramidal neurons. This general mechanism for sequence generation leads to sparse pyramidal cell and dense basket cell spiking, does not rely on synfire chain-like feedforward excitation and may be relevant for other brain regions as well.
Collapse
Affiliation(s)
- Wilhelm Braun
- Neural Network Dynamics and Computation, Institute of Genetics, University of Bonn, Bonn, Germany
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (WB); (R-MM)
| | - Raoul-Martin Memmesheimer
- Neural Network Dynamics and Computation, Institute of Genetics, University of Bonn, Bonn, Germany
- * E-mail: (WB); (R-MM)
| |
Collapse
|
3
|
Bernardi D, Doron G, Brecht M, Lindner B. A network model of the barrel cortex combined with a differentiator detector reproduces features of the behavioral response to single-neuron stimulation. PLoS Comput Biol 2021; 17:e1007831. [PMID: 33556070 PMCID: PMC7895413 DOI: 10.1371/journal.pcbi.1007831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 02/19/2021] [Accepted: 01/17/2021] [Indexed: 11/23/2022] Open
Abstract
The stimulation of a single neuron in the rat somatosensory cortex can elicit a behavioral response. The probability of a behavioral response does not depend appreciably on the duration or intensity of a constant stimulation, whereas the response probability increases significantly upon injection of an irregular current. Biological mechanisms that can potentially suppress a constant input signal are present in the dynamics of both neurons and synapses and seem ideal candidates to explain these experimental findings. Here, we study a large network of integrate-and-fire neurons with several salient features of neuronal populations in the rat barrel cortex. The model includes cellular spike-frequency adaptation, experimentally constrained numbers and types of chemical synapses endowed with short-term plasticity, and gap junctions. Numerical simulations of this model indicate that cellular and synaptic adaptation mechanisms alone may not suffice to account for the experimental results if the local network activity is read out by an integrator. However, a circuit that approximates a differentiator can detect the single-cell stimulation with a reliability that barely depends on the length or intensity of the stimulus, but that increases when an irregular signal is used. This finding is in accordance with the experimental results obtained for the stimulation of a regularly-spiking excitatory cell. It is widely assumed that only a large group of neurons can encode a stimulus or control behavior. This tenet of neuroscience has been challenged by experiments in which stimulating a single cortical neuron has had a measurable effect on an animal’s behavior. Recently, theoretical studies have explored how a single-neuron stimulation could be detected in a large recurrent network. However, these studies missed essential biological mechanisms of cortical networks and are unable to explain more recent experiments in the barrel cortex. Here, to describe the stimulated brain area, we propose and study a network model endowed with many important biological features of the barrel cortex. Importantly, we also investigate different readout mechanisms, i.e. ways in which the stimulation effects can propagate to other brain areas. We show that a readout network which tracks rapid variations in the local network activity is in agreement with the experiments. Our model demonstrates a possible mechanism for how the stimulation of a single neuron translates into a signal at the population level, which is taken as a proxy of the animal’s response. Our results illustrate the power of spiking neural networks to properly describe the effects of a single neuron’s activity.
Collapse
Affiliation(s)
- Davide Bernardi
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- * E-mail:
| | - Guy Doron
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Jordan J, Helias M, Diesmann M, Kunkel S. Efficient Communication in Distributed Simulations of Spiking Neuronal Networks With Gap Junctions. Front Neuroinform 2020; 14:12. [PMID: 32431602 PMCID: PMC7214808 DOI: 10.3389/fninf.2020.00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 12/01/2022] Open
Abstract
Investigating the dynamics and function of large-scale spiking neuronal networks with realistic numbers of synapses is made possible today by state-of-the-art simulation code that scales to the largest contemporary supercomputers. However, simulations that involve electrical interactions, also called gap junctions, besides chemical synapses scale only poorly due to a communication scheme that collects global data on each compute node. In comparison to chemical synapses, gap junctions are far less abundant. To improve scalability we exploit this sparsity by integrating an existing framework for continuous interactions with a recently proposed directed communication scheme for spikes. Using a reference implementation in the NEST simulator we demonstrate excellent scalability of the integrated framework, accelerating large-scale simulations with gap junctions by more than an order of magnitude. This allows, for the first time, the efficient exploration of the interactions of chemical and electrical coupling in large-scale neuronal networks models with natural synapse density distributed across thousands of compute nodes.
Collapse
Affiliation(s)
- Jakob Jordan
- Department of Physiology, University of Bern, Bern, Switzerland.,Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre, Jülich, Germany.,Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany.,JARA Institute Brain Structure Function Relationship (INM-10), Jülich Research Centre, Jülich, Germany
| | - Moritz Helias
- Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre, Jülich, Germany.,Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany.,JARA Institute Brain Structure Function Relationship (INM-10), Jülich Research Centre, Jülich, Germany.,Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
| | - Markus Diesmann
- Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre, Jülich, Germany.,Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany.,JARA Institute Brain Structure Function Relationship (INM-10), Jülich Research Centre, Jülich, Germany.,Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Susanne Kunkel
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
5
|
Pietras B, Devalle F, Roxin A, Daffertshofer A, Montbrió E. Exact firing rate model reveals the differential effects of chemical versus electrical synapses in spiking networks. Phys Rev E 2020; 100:042412. [PMID: 31771022 DOI: 10.1103/physreve.100.042412] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 01/09/2023]
Abstract
Chemical and electrical synapses shape the dynamics of neuronal networks. Numerous theoretical studies have investigated how each of these types of synapses contributes to the generation of neuronal oscillations, but their combined effect is less understood. This limitation is further magnified by the impossibility of traditional neuronal mean-field models-also known as firing rate models or firing rate equations-to account for electrical synapses. Here, we introduce a firing rate model that exactly describes the mean-field dynamics of heterogeneous populations of quadratic integrate-and-fire (QIF) neurons with both chemical and electrical synapses. The mathematical analysis of the firing rate model reveals a well-established bifurcation scenario for networks with chemical synapses, characterized by a codimension-2 cusp point and persistent states for strong recurrent excitatory coupling. The inclusion of electrical coupling generally implies neuronal synchrony by virtue of a supercritical Hopf bifurcation. This transforms the cusp scenario into a bifurcation scenario characterized by three codimension-2 points (cusp, Takens-Bogdanov, and saddle-node separatrix loop), which greatly reduces the possibility for persistent states. This is generic for heterogeneous QIF networks with both chemical and electrical couplings. Our results agree with several numerical studies on the dynamics of large networks of heterogeneous spiking neurons with electrical and chemical couplings.
Collapse
Affiliation(s)
- Bastian Pietras
- Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute of Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, van der Boechorststraat 9, Amsterdam 1081 BT, The Netherlands.,Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom.,Institute of Mathematics, Technical University Berlin, 10623 Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Federico Devalle
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom.,Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Alex Roxin
- Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona), Spain.,Barcelona Graduate School of Mathematics, 08193 Barcelona, Spain
| | - Andreas Daffertshofer
- Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute of Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, van der Boechorststraat 9, Amsterdam 1081 BT, The Netherlands
| | - Ernest Montbrió
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
6
|
Liu X, Kuzum D. Hippocampal-Cortical Memory Trace Transfer and Reactivation Through Cell-Specific Stimulus and Spontaneous Background Noise. Front Comput Neurosci 2019; 13:67. [PMID: 31680922 PMCID: PMC6798041 DOI: 10.3389/fncom.2019.00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/10/2019] [Indexed: 01/07/2023] Open
Abstract
The hippocampus plays important roles in memory formation and retrieval through sharp-wave-ripples. Recent studies have shown that certain neuron populations in the prefrontal cortex (PFC) exhibit coordinated reactivations during awake ripple events. These experimental findings suggest that the awake ripple is an important biomarker, through which the hippocampus interacts with the neocortex to assist memory formation and retrieval. However, the computational mechanisms of this ripple based hippocampal-cortical coordination are still not clear due to the lack of unified models that include both the hippocampal and cortical networks. In this work, using a coupled biophysical model of both CA1 and PFC, we investigate possible mechanisms of hippocampal-cortical memory trace transfer and the conditions that assist reactivation of the transferred memory traces in the PFC. To validate our model, we first show that the local field potentials generated in the hippocampus and PFC exhibit ripple range activities that are consistent with the recent experimental studies. Then we demonstrate that during ripples, sequence replays can successfully transfer the information stored in the hippocampus to the PFC recurrent networks. We investigate possible mechanisms of memory retrieval in PFC networks. Our results suggest that the stored memory traces in the PFC network can be retrieved through two different mechanisms, namely the cell-specific input representing external stimuli and non-specific spontaneous background noise representing spontaneous memory recall events. Importantly, in both cases, the memory reactivation quality is robust to network connection loss. Finally, we find out that the quality of sequence reactivations is enhanced by both increased number of SWRs and an optimal background noise intensity, which tunes the excitability of neurons to a proper level. Our study presents a mechanistic explanation for the memory trace transfer from the hippocampus to neocortex through ripple coupling in awake states and reports two different mechanisms by which the stored memory traces can be successfully retrieved.
Collapse
Affiliation(s)
- Xin Liu
- Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, CA, United States
| | - Duygu Kuzum
- Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
7
|
Broncel A, Bocian R, Kłos-Wojtczak P, Konopacki J. Hippocampal theta rhythm induced by vagal nerve stimulation: The effect of modulation of electrical coupling. Brain Res Bull 2019; 152:236-245. [DOI: 10.1016/j.brainresbull.2019.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023]
|
8
|
Michalikova M, Remme MW, Schmitz D, Schreiber S, Kempter R. Spikelets in pyramidal neurons: generating mechanisms, distinguishing properties, and functional implications. Rev Neurosci 2019; 31:101-119. [DOI: 10.1515/revneuro-2019-0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/13/2019] [Indexed: 11/15/2022]
Abstract
Abstract
Spikelets are small spike-like depolarizations that are found in somatic recordings of many neuron types. Spikelets have been assigned important functions, ranging from neuronal synchronization to the regulation of synaptic plasticity, which are specific to the particular mechanism of spikelet generation. As spikelets reflect spiking activity in neuronal compartments that are electrotonically distinct from the soma, four modes of spikelet generation can be envisaged: (1) dendritic spikes or (2) axonal action potentials occurring in a single cell as well as action potentials transmitted via (3) gap junctions or (4) ephaptic coupling in pairs of neurons. In one of the best studied neuron type, cortical pyramidal neurons, the origins and functions of spikelets are still unresolved; all four potential mechanisms have been proposed, but the experimental evidence remains ambiguous. Here we attempt to reconcile the scattered experimental findings in a coherent theoretical framework. We review in detail the various mechanisms that can give rise to spikelets. For each mechanism, we present the biophysical underpinnings as well as the resulting properties of spikelets and compare these predictions to experimental data from pyramidal neurons. We also discuss the functional implications of each mechanism. On the example of pyramidal neurons, we illustrate that several independent spikelet-generating mechanisms fulfilling vastly different functions might be operating in a single cell.
Collapse
Affiliation(s)
- Martina Michalikova
- Institute for Theoretical Biology, Department of Biology , Humboldt-Universität zu Berlin , D-10115 Berlin , Germany
| | - Michiel W.H. Remme
- Institute for Theoretical Biology, Department of Biology , Humboldt-Universität zu Berlin , D-10115 Berlin , Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Charite-University Medicine , D-10117 Berlin , Germany
- Bernstein Center for Computational Neuroscience Berlin , D-10115 Berlin , Germany
- Einstein Center for Neurosciences Berlin , D-10117 Berlin , Germany
- Berlin Institute of Health , D-10178 Berlin , Germany
- Cluster of Excellence NeuroCure , D-10117 Berlin , Germany
| | - Susanne Schreiber
- Institute for Theoretical Biology, Department of Biology , Humboldt-Universität zu Berlin , D-10115 Berlin , Germany
- Einstein Center for Neurosciences Berlin , D-10117 Berlin , Germany
- Bernstein Center for Computational Neuroscience Berlin , Philippstr. 13, D-10115 Berlin , Germany
| | - Richard Kempter
- Institute for Theoretical Biology, Department of Biology , Humboldt-Universität zu Berlin , D-10115 Berlin , Germany
- Einstein Center for Neurosciences Berlin , D-10117 Berlin , Germany
- Bernstein Center for Computational Neuroscience Berlin , Philippstr. 13, D-10115 Berlin , Germany
| |
Collapse
|