1
|
Shiromani PJ, Vidal-Ortiz A. Most dynorphin neurons in the zona incerta-perifornical area are active in waking relative to non-rapid-eye movement and rapid-eye movement sleep. Sleep 2024; 47:zsae065. [PMID: 38447008 PMCID: PMC11494376 DOI: 10.1093/sleep/zsae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Indexed: 03/08/2024] Open
Abstract
Dynorphin is an endogenous opiate localized in many brain regions and spinal cord, but the activity of dynorphin neurons during sleep is unknown. Dynorphin is an inhibitory neuropeptide that is coreleased with orexin, an excitatory neuropeptide. We used microendoscopy to test the hypothesis that, like orexin, the dynorphin neurons are wake-active. Dynorphin-cre mice (n = 3) were administered rAAV8-Ef1a-Con/Foff 2.0-GCaMP6M into the zona incerta-perifornical area, implanted with a GRIN lens (gradient reflective index), and electrodes to the skull that recorded sleep. One month later, a miniscope imaged calcium fluorescence in dynorphin neurons during multiple bouts of wake, non-rapid-eye movement (NREM), and rapid-eye movement (REM) sleep. Unbiased data analysis identified changes in calcium fluorescence in 64 dynorphin neurons. Most of the dynorphin neurons (72%) had the highest fluorescence during bouts of active and quiet waking compared to NREM or REM sleep; a subset (20%) were REM-max. Our results are consistent with the emerging evidence that the activity of orexin neurons can be classified as wake-max or REM-max. Since the two neuropeptides are coexpressed and coreleased, we suggest that dynorphin-cre-driven calcium sensors could increase understanding of the role of this endogenous opiate in pain and sleep.
Collapse
Affiliation(s)
- Priyattam J Shiromani
- Laboratory of Sleep Medicine and Chronobiology, Research Service, Ralph H. Johnson Veterans Healthcare System Charleston, SC, USA
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Aurelio Vidal-Ortiz
- Laboratory of Sleep Medicine and Chronobiology, Research Service, Ralph H. Johnson Veterans Healthcare System Charleston, SC, USA
| |
Collapse
|
2
|
Chen CK, Kawano T, Yanagisawa M, Hayashi Y. Forward genetic screen of Caenorhabditis elegans mutants with impaired sleep reveals a crucial role of neuronal diacylglycerol kinase DGK-1 in regulating sleep. Genetics 2023; 225:iyad140. [PMID: 37682636 DOI: 10.1093/genetics/iyad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 09/10/2023] Open
Abstract
The sleep state is widely observed in animals. The molecular mechanisms underlying sleep regulation, however, remain largely unclear. In the nematode Caenorhabditis elegans, developmentally timed sleep (DTS) and stress-induced sleep (SIS) are 2 types of quiescent behaviors that fulfill the definition of sleep and share conserved sleep-regulating molecules with mammals. To identify novel sleep-regulating molecules, we conducted an unbiased forward genetic screen based on DTS phenotypes. We isolated 2 mutants, rem8 and rem10, that exhibited significantly disrupted DTS and SIS. The causal gene of the abnormal sleep phenotypes in both mutants was mapped to dgk-1, which encodes diacylglycerol kinase. Perhaps due to the diminished SIS, dgk-1 mutant worms exhibited decreased survival following exposure to a noxious stimulus. Pan-neuronal and/or cholinergic expression of dgk-1 partly rescued the dgk-1 mutant defects in DTS, SIS, and post-stress survival. Moreover, we revealed that pkc-1/nPKC participates in sleep regulation and counteracts the effect of dgk-1; the reduced DTS, SIS, and post-stress survival rate were partly suppressed in the pkc-1; dgk-1 double mutant compared with the dgk-1 single mutant. Excessive sleep observed in the pkc-1 mutant was also suppressed in the pkc-1; dgk-1 double mutant, implying that dgk-1 has a complicated mode of action. Our findings indicate that neuronal DGK-1 is essential for normal sleep and that the counterbalance between DGK-1 and PKC-1 is crucial for regulating sleep and mitigating post-stress damage.
Collapse
Affiliation(s)
- Chung-Kuan Chen
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Taizo Kawano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
3
|
Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022; 185:140-161. [PMID: 35550156 PMCID: PMC9554922 DOI: 10.1016/j.brainresbull.2022.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022]
Abstract
Sleep disorders are widespread in society and are prevalent in military personnel and in Veterans. Disturbances of sleep and arousal mechanisms are common in neuropsychiatric disorders such as schizophrenia, post-traumatic stress disorder, anxiety and affective disorders, traumatic brain injury, dementia, and substance use disorders. Sleep disturbances exacerbate suicidal ideation, a major concern for Veterans and in the general population. These disturbances impair quality of life, affect interpersonal relationships, reduce work productivity, exacerbate clinical features of other disorders, and impair recovery. Thus, approaches to improve sleep and modulate arousal are needed. Basic science research on the brain circuitry controlling sleep and arousal led to the recent approval of new drugs targeting the orexin/hypocretin and histamine systems, complementing existing drugs which affect GABAA receptors and monoaminergic systems. Non-invasive brain stimulation techniques to modulate sleep and arousal are safe and show potential but require further development to be widely applicable. Invasive viral vector and deep brain stimulation approaches are also in their infancy but may be used to modulate sleep and arousal in severe neurological and psychiatric conditions. Behavioral, pharmacological, non-invasive brain stimulation and cell-specific invasive approaches covered here suggest the potential to selectively influence arousal, sleep initiation, sleep maintenance or sleep-stage specific phenomena such as sleep spindles or slow wave activity. These manipulations can positively impact the treatment of a wide range of neurological and psychiatric disorders by promoting the restorative effects of sleep on memory consolidation, clearance of toxic metabolites, metabolism, and immune function and by decreasing hyperarousal.
Collapse
|
4
|
Sharma R, Parikh M, Mishra V, Zuniga A, Sahota P, Thakkar M. Sleep, sleep homeostasis and arousal disturbances in alcoholism. Brain Res Bull 2022; 182:30-43. [PMID: 35122900 DOI: 10.1016/j.brainresbull.2022.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 12/11/2022]
Abstract
The effects of alcohol on human sleep were first described almost 70 years ago. Since then, accumulating evidences suggest that alcohol intake at bed time immediately induces sleep [reduces the time to fall asleep (sleep onset latency), and consolidates and enhances the quality (delta power) and the quantity of sleep]. Such potent sleep promoting activity makes alcohol as one of the most commonly used "over the counter" sleep aid. However, the somnogenic effects, after alcohol intake, slowly wane off and often followed by sleep disruptions during the rest of the night. Repeated use of alcohol leads to the development of rapid tolerance resulting into an alcohol abuse. Moreover, chronic and excessive alcohol intake leads to the development of alcohol use disorder (AUD). Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceed $18 billion. Thus, although alcohol associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, a conceptual framework and clinical research focused on understanding the relationship between alcohol and sleep is first described. In the next section, our new and exciting preclinical studies, to understand the cellular and molecular mechanism of how acute and chronic alcohol affects sleep, are described. In the end, based on observations from our recent findings and related literature, opportunities for the development of innovative strategies to prevent and treat AUD are proposed.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA
| | - Meet Parikh
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA
| | - Vaibhav Mishra
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA
| | - Abigail Zuniga
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA.
| |
Collapse
|
5
|
Shiromani PJ, Blanco-Centurion C, Vidal-Ortiz A. Mapping Network Activity in Sleep. Front Neurosci 2021; 15:646468. [PMID: 33828453 PMCID: PMC8019804 DOI: 10.3389/fnins.2021.646468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/04/2021] [Indexed: 11/22/2022] Open
Abstract
It was in the influenza pandemic of 1918 that von Economo identified specific brain regions regulating sleep and wake. Since then researchers have used a variety of tools to determine how the brain shifts between states of consciousness. In every enterprise new tools have validated existing data, corrected errors and made new discoveries to advance science. The brain is a challenge but new tools can disentangle the brain network. We summarize the newest tool, a miniature microscope, that provides unprecedented view of activity of glia and neurons in freely behaving mice. With this tool we have observed that the activity of a majority of GABA and MCH neurons in the lateral hypothalamus is heavily biased toward sleep. We suggest that miniscope data identifies activity at the cellular level in normal versus diseased brains, and also in response to specific hypnotics. Shifts in activity in small networks across the brain will help identify point of criticality that switches the brain from wake to sleep.
Collapse
Affiliation(s)
- Priyattam J Shiromani
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States.,Department of Psychiatry and Biobehavioral Science, Medical University of South Carolina, Charleston, SC, United States
| | - Carlos Blanco-Centurion
- Department of Psychiatry and Biobehavioral Science, Medical University of South Carolina, Charleston, SC, United States
| | | |
Collapse
|
6
|
Deurveilher S, Golovin T, Hall S, Semba K. Microglia dynamics in sleep/wake states and in response to sleep loss. Neurochem Int 2020; 143:104944. [PMID: 33359188 DOI: 10.1016/j.neuint.2020.104944] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/22/2022]
Abstract
Sleep has an essential role for optimal brain function, but the cellular substrates for sleep regulation are not fully understood. Microglia, the immune cells of the brain, have gained increasingly more attention over the last two decades for their important roles in various brain functions that extend beyond their well-known immune function, including brain development, neuronal protection, and synaptic plasticity. Here we review recent advances in understanding: i) morphological and phenotypic dynamics of microglia including process motility/growth and gene/protein expression, and ii) microglia-neuron interactions including phagocytosis and contact at synapses which alters neuronal circuit activity, both under physiological state in the adult brain. We discuss how the microglia-neuron interactions particularly at synapses could influence microglia and neuronal activities across circadian cycles and sleep/wake states. We also review recent findings on how microglia respond to sleep loss. We conclude by pointing out key questions and proposing suggestions for future research to better understand the role of microglia in sleep regulation, sleep homeostasis, and the function of sleep.
Collapse
Affiliation(s)
- Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tatjana Golovin
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shannon Hall
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
7
|
Turner KL, Gheres KW, Proctor EA, Drew PJ. Neurovascular coupling and bilateral connectivity during NREM and REM sleep. eLife 2020; 9:62071. [PMID: 33118932 PMCID: PMC7758068 DOI: 10.7554/elife.62071] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
To understand how arousal state impacts cerebral hemodynamics and neurovascular coupling, we monitored neural activity, behavior, and hemodynamic signals in un-anesthetized, head-fixed mice. Mice frequently fell asleep during imaging, and these sleep events were interspersed with periods of wake. During both NREM and REM sleep, mice showed large increases in cerebral blood volume ([HbT]) and arteriole diameter relative to the awake state, two to five times larger than those evoked by sensory stimulation. During NREM, the amplitude of bilateral low-frequency oscillations in [HbT] increased markedly, and coherency between neural activity and hemodynamic signals was higher than the awake resting and REM states. Bilateral correlations in neural activity and [HbT] were highest during NREM, and lowest in the awake state. Hemodynamic signals in the cortex are strongly modulated by arousal state, and changes during sleep are substantially larger than sensory-evoked responses.
Collapse
Affiliation(s)
- Kevin L Turner
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, United States.,Center for Neural Engineering, The Pennsylvania State University, University Park, United States
| | - Kyle W Gheres
- Center for Neural Engineering, The Pennsylvania State University, University Park, United States.,Graduate Program in Molecular, Cellular, and Integrative Biosciences, The Pennsylvania State University, University Park, United States
| | - Elizabeth A Proctor
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, United States.,Center for Neural Engineering, The Pennsylvania State University, University Park, United States.,Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, United States.,Department of Neurosurgery, Penn State College of Medicine, Hershey, United States.,Department of Pharmacology, Penn State College of Medicine, Hershey, United States
| | - Patrick J Drew
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, United States.,Center for Neural Engineering, The Pennsylvania State University, University Park, United States.,Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, United States.,Department of Neurosurgery, Penn State College of Medicine, Hershey, United States
| |
Collapse
|