1
|
Kim H, Soedirdjo S, Chung YC, Gray K, Fernandes SR, Dhaher YY. Grid-based transcutaneous spinal cord stimulation: probing neuromodulatory effect in spinal flexion reflex circuits. J Neural Eng 2025; 22:026046. [PMID: 40153866 PMCID: PMC11974257 DOI: 10.1088/1741-2552/adc6bd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/04/2025] [Accepted: 03/28/2025] [Indexed: 04/01/2025]
Abstract
Objective.Non-invasive spinal stimulation has the potential to modulate spinal excitability. This study explored the modulatory capacity of sub-motor grid-based transcutaneous spinal cord stimulation (tSCS) applied to the lumbar spinal cord in neurologically intact participants. Our objective was to examine the effect of grid spinal stimulation on polysynaptic reflex pathways involving motoneurons and interneurons likely activated by Aβ/δfiber-mediated cutaneous afferents.Approach.Stimulation was delivered using two grid electrode montages, generating a net electric field in transverse or diagonal directions. We administered tSCS with the center of the grid aligned with the T10-T11 spinous process. Participants were seated for the 20 min stimulation duration. At 30 min after the cessation of spinal stimulation, we examined neuromodulatory effects on spinal circuit excitability in the tibialis anterior muscle by employing the classical flexion reflex paradigms. Additionally, we evaluated spinal motoneuron excitability using theH-reflex paradigm in the soleus muscle to explore the differential effects of tSCS on the polysynaptic versus monosynaptic reflex pathway and to test the spatial extent of the grid stimulation.Main results.Our findings indicated significant neuromodulatory effects on the flexion reflex, resulting in a net inhibitory effect, regardless of the grid electrode montages. Our data further indicated that the flexion reflex duration was significantly shortened only by the diagonal montage.Significance.Our results suggest that grid-based tSCS may specifically modulate spinal activities associated with polysynaptic flexion reflex pathways, with the potential for grid-specific targeted neuromodulation.
Collapse
Affiliation(s)
- Hyungtaek Kim
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
- Department of Bioengineering, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, United States of America
| | - Subaryani Soedirdjo
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Yu-Chen Chung
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Kathryn Gray
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Sofia Rita Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Yasin Y Dhaher
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
- Department of Bioengineering, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, United States of America
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| |
Collapse
|
2
|
Stępień G, Jelonek W, Goodall S, McNeil CJ, Łochyński D. Corticospinal excitability and voluntary activation of the quadriceps muscle is not affected by a single session of anodal transcutaneous spinal direct current stimulation in healthy, young adults. Eur J Neurosci 2024; 60:7103-7123. [PMID: 39572029 DOI: 10.1111/ejn.16614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024]
Abstract
The aim of the present study was to determine if anodal transcutaneous spinal direct current stimulation (tsDCS) affects corticospinal excitability (CSE) and voluntary activation (VA) of the quadriceps femoris muscle (QM). This was a double-blind, randomized study in which spine-shoulder anodal tsDCS (active electrode centered over T11-12, 2.5 mA, 20 min) was applied in a seated position. Transcranial magnetic stimulation (TMS) was used to measure motor evoked potentials (MEP) and construct stimulus-response curves in healthy participants (eight females and five males, Experiment 1). VA was measured via the interpolated twitch technique, whereby muscle twitches were evoked using electrical femoral nerve stimulation and TMS (seven females and six males, Experiment 2). Measurements were carried out before, directly, and 30 min after sham and anodal tsDCS (with ≥4 days between sessions). There was no interaction between stimulation × time on stimulus-response curve expressed by slope, stimulus intensity corresponding to 50% of the maximal MEP, and peak-to-peak amplitude of the maximal MEP. Maximal voluntary isometric contraction (MVIC) torque did not change and VA was not affected regardless of the QM torque level (25, 50, or 100% of MVIC). A single, twenty-minute session of spine-shoulder anodal tsDCS did not increase CSE and VA of QM during submaximal and maximal contraction. This suggests that neither excitability to a known input nor responsiveness of motoneurons to submaximal and maximal cortical drive were affected by anodal tsDCS.
Collapse
Affiliation(s)
- Grzegorz Stępień
- Department of Neuromuscular Physiotherapy, Poznan University of Physical Education, Poznan, Poland
| | - Wojciech Jelonek
- Department of Neuromuscular Physiotherapy, Poznan University of Physical Education, Poznan, Poland
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Chris J McNeil
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Dawid Łochyński
- Department of Neuromuscular Physiotherapy, Poznan University of Physical Education, Poznan, Poland
| |
Collapse
|
3
|
Hammar I, Jankowska E. Modulation of sensory input to the spinal cord: Contribution of focal epidural polarization and of GABA released by interneurons and glial cells. Eur J Neurosci 2024; 60:5019-5039. [PMID: 39099396 DOI: 10.1111/ejn.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 07/13/2024] [Indexed: 08/06/2024]
Abstract
Modulation of input from primary afferent fibres has long been examined at the level of the first relays of these fibres. However, recent studies reveal that input to the spinal cord may also be modulated at the level of the very entry of afferent fibres to the spinal grey matter before action potentials in intraspinal collaterals of afferent fibres reach their target neurons. Such modulation greatly depends on the actions of GABA via extrasynaptic membrane receptors. In the reported study we hypothesized that the increase in excitability of afferent fibres following epidural polarization close to the site where collaterals of afferent fibres leave the dorsal columns is due to the release of GABA from two sources: not only GABAergic interneurons but also glial cells. We present evidence, primo, that GABA released from both these sources contributes to a long-lasting increase in the excitability and a shortening of the refractory period of epidurally stimulated afferent fibres and, secondo, that effects of epidural polarization on the release of GABA are more critical for these changes than direct effects of DC on the stimulated fibres. The experiments were carried out in deeply anaesthetized rats in which changes in compound action potentials evoked in hindlimb peripheral nerves by dorsal column stimulation were used as a measure of the excitability of afferent fibres. The study throws new light on the modulation of input to spinal networks but also on mechanisms underlying the restoration of spinal functions.
Collapse
Affiliation(s)
- Ingela Hammar
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Di Lazzaro V, Ranieri F, Bączyk M, de Carvalho M, Dileone M, Dubbioso R, Fernandes S, Kozak G, Motolese F, Ziemann U. Novel approaches to motoneuron disease/ALS treatment using non-invasive brain and spinal stimulation: IFCN handbook chapter. Clin Neurophysiol 2024; 158:114-136. [PMID: 38218077 DOI: 10.1016/j.clinph.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/15/2024]
Abstract
Non-invasive brain stimulation techniques have been exploited in motor neuron disease (MND) with multifold objectives: to support the diagnosis, to get insights in the pathophysiology of these disorders and, more recently, to slow down disease progression. In this review, we consider how neuromodulation can now be employed to treat MND, with specific attention to amyotrophic lateral sclerosis (ALS), the most common form with upper motoneuron (UMN) involvement, taking into account electrophysiological abnormalities revealed by human and animal studies that can be targeted by neuromodulation techniques. This review article encompasses repetitive transcranial magnetic stimulation methods (including low-frequency, high-frequency, and pattern stimulation paradigms), transcranial direct current stimulation as well as experimental findings with the newer approach of trans-spinal direct current stimulation. We also survey and discuss the trials that have been performed, and future perspectives.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy.
| | - Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Królowej Jadwigi Street 27/39, 61-871 Poznań, Poland
| | - Mamede de Carvalho
- Institute of Physiology, Institute of Molecular Medicine-JLA, Egas Moniz Study Centre, Faculty of Medicine, University of Lisbon, Lisbon 1649-028, Portugal; Department of Neurosciences and Mental Health, CHULN, Lisbon, Portugal
| | - Michele Dileone
- Faculty of Health Sciences, UCLM Talavera de la Reina, Toledo, Spain; Neurology Department, Hospital Nuestra Señora del Prado, Talavera de la Reina, Toledo, Spain
| | - Raffaele Dubbioso
- Neurophysiology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Napoli, Italy
| | - Sofia Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016-Lisboa, Portugal
| | - Gabor Kozak
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Francesco Motolese
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Keser Z, Ikramuddin S, Shekhar S, Feng W. Neuromodulation for Post-Stroke Motor Recovery: a Narrative Review of Invasive and Non‑Invasive Tools. Curr Neurol Neurosci Rep 2023; 23:893-906. [PMID: 38015351 DOI: 10.1007/s11910-023-01319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE OF REVIEW Stroke remains a leading disabling condition, and many survivors have permanent disability despite acute stroke treatment and subsequent standard-of-care rehabilitation therapies. Adjunctive neuromodulation is an emerging frontier in the field of stroke recovery. In this narrative review, we aim to highlight and summarize various neuromodulation techniques currently being investigated to enhance recovery and reduce impairment in patients with stroke. RECENT FINDINGS For motor recovery, repetitive transcranial magnetic simulation (rTMS) and direct current stimulation (tDCS) have shown promising results in many smaller-scale trials. Still, their efficacy has yet to be proven in large-scale pivotal trials. A promising large-scale study investigating higher dose tDCS combined with constraint movement therapy to enhance motor recovery is currently underway. MRI-guided tDCS studies in subacute and chronic post-stroke aphasia showed promising benefits for picture-naming recovery. rTMS, particularly inhibitory stimulation over the contralesional homolog, could represent a pathway forward in post-stroke motor recovery in the setting of a well-designed and adequately powered clinical trial. Recently evidenced-based guideline actually supported Level A (definite efficacy) for the use of low-frequency rTMS of the primary motor cortex for hand motor recovery in the post-acute stage of stroke based on the meta-analysis result. Adjunctive vagal nerve stimulation has recently received FDA approval to enhance upper limb motor recovery in chronic ischemic stroke with moderate impairment, and progress has been made to implement it in real-world practice. Despite a few small and large-scale studies in epidural stimulation (EDS), further research on the utilization of EDS in post-stroke recovery is needed. Deep brain stimulation or stent-based neuromodulation has yet to be further tested regarding safety and efficacy. Adjunctive neuromodulation to rehabilitation therapy is a promising avenue for promoting post-stroke recovery and decreasing the overall burden of disability. The pipeline for neuromodulation technology remains strong as they span from the preclinical stage to the post-market stage. We are optimistic to see that more neuromodulation tools will be available to stroke survivors in the not-to-distant future.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Salman Ikramuddin
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shashank Shekhar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
6
|
Marangolo P, Vasta S, Manfredini A, Caltagirone C. What Else Can Be Done by the Spinal Cord? A Review on the Effectiveness of Transpinal Direct Current Stimulation (tsDCS) in Stroke Recovery. Int J Mol Sci 2023; 24:10173. [PMID: 37373323 DOI: 10.3390/ijms241210173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Since the spinal cord has traditionally been considered a bundle of long fibers connecting the brain to all parts of the body, the study of its role has long been limited to peripheral sensory and motor control. However, in recent years, new studies have challenged this view pointing to the spinal cord's involvement not only in the acquisition and maintenance of new motor skills but also in the modulation of motor and cognitive functions dependent on cortical motor regions. Indeed, several reports to date, which have combined neurophysiological techniques with transpinal direct current stimulation (tsDCS), have shown that tsDCS is effective in promoting local and cortical neuroplasticity changes in animals and humans through the activation of ascending corticospinal pathways that modulate the sensorimotor cortical networks. The aim of this paper is first to report the most prominent tsDCS studies on neuroplasticity and its influence at the cortical level. Then, a comprehensive review of tsDCS literature on motor improvement in animals and healthy subjects and on motor and cognitive recovery in post-stroke populations is presented. We believe that these findings might have an important impact in the future making tsDCS a potential suitable adjunctive approach for post-stroke recovery.
Collapse
Affiliation(s)
- Paola Marangolo
- Department of Humanities Studies, University Federico II, 80133 Naples, Italy
| | - Simona Vasta
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Manfredini
- Department of Humanities Studies, University Federico II, 80133 Naples, Italy
| | | |
Collapse
|
7
|
Highlander MM, Elbasiouny SM. Non-Invasive Transcutaneous Spinal DC Stimulation as a Neurorehabilitation ALS Therapy in Awake G93A Mice: The First Step to Clinical Translation. Bioengineering (Basel) 2022; 9:bioengineering9090441. [PMID: 36134987 PMCID: PMC9495504 DOI: 10.3390/bioengineering9090441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal direct current stimulation (sDCS) modulates motoneuron (MN) excitability beyond the stimulation period, making it a potential neurorehabilitation therapy for amyotrophic lateral sclerosis (ALS), a MN degenerative disease in which MN excitability dysfunction plays a critical and complex role. Recent evidence confirms induced changes in MN excitability via measured MN electrophysiological properties in the SOD1 ALS mouse during and following invasive subcutaneous sDCS (ssDCS). The first aim of our pilot study was to determine the clinical potential of these excitability changes at symptom onset (P90-P105) in ALS via a novel non-invasive transcutaneous sDCS (tsDCS) treatment paradigm on un-anesthetized SOD1-G93A mice. The primary outcomes were motor function and survival. Unfortunately, skin damage avoidance limited the strength of applied stimulation intensity, likewise limiting measurable primary effects. The second aim of this study was to determine which orientation of stimulation (anodal vs cathodal, which are expected to have opposing effects) is beneficial vs harmful in ALS. Despite the lack of measured primary effects, strong trends in survival of the anodal stimulation group, combined with an analysis of survival variance and correlations among symptoms, suggest anodal stimulation is harmful at symptom onset. Therefore, cathodal stimulation may be beneficial at symptom onset if a higher stimulation intensity can be safely achieved via subcutaneously implanted electrodes or alternative methods. Importantly, the many logistical, physical, and stimulation parameters explored in developing this novel non-invasive treatment paradigm on unanesthetized mice provide insight into an appropriate and feasible methodology for future tsDCS study designs and potential clinical translation.
Collapse
Affiliation(s)
- Morgan M. Highlander
- Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, OH 45435, USA
| | - Sherif M. Elbasiouny
- Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, OH 45435, USA
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH 45435, USA
- Correspondence: ; Tel.: +1-937-775-2492
| |
Collapse
|
8
|
Differential effects of invasive anodal trans-spinal direct current stimulation on monosynaptic EPSPs, Ia afferents excitability, and motoneuron intrinsic properties between SOD1 G93A and WT mice. Neuroscience 2022; 498:125-143. [DOI: 10.1016/j.neuroscience.2022.06.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/27/2022] [Accepted: 06/25/2022] [Indexed: 01/06/2023]
|
9
|
Song W, Martin JH. Trans-Spinal Direct Current Stimulation Targets Ca 2+ Channels to Induce Persistent Motor Unit Responses. Front Neurosci 2022; 16:856948. [PMID: 35546896 PMCID: PMC9081846 DOI: 10.3389/fnins.2022.856948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/04/2022] [Indexed: 01/13/2023] Open
Abstract
Trans-spinal direct current stimulation (tsDCS) is a neuromodulatory approach to augment spinal cord activity to improve function after neurological disease and injury. Little is known about the mechanisms underlying tsDCS actions on the motor system. The purpose of this study is to determine the role for a persistent inward current (PIC)-like response in motoneurons in mediating tsDCS actions. We recorded single motor units from the extensor and flexor carpi radialis muscles in healthy sedated rats and measured unit activity changes produced by cervical enlargement cathodal and anodal tsDCS (c-tsDCS; a-tsDCS). Both c-tsDCS and a-tsDCS immediately increased spontaneous motor unit firing during stimulation. After c-tsDCS was stopped, spontaneous firing persisted for a substantial period (165 ± 5s), yet after a-tsDCS activity shortly returned to baseline (27 ± 7s). Administration of the L-type calcium channel blocker Nimodipine reduced spontaneous motor unit firing during c-tsDCS and blocked the persistent response. By contrast, Nimodipine did not change unit firing during a-tsDCS but the short persistent response was blocked. Computer simulation using a two-compartment neuronal model replicated the main experimental observations: larger and more persistent responses during and after c-tsDCS than a-tsDCS. Using reduced Ca2+ conductance to model Nimodipine action, a reduced response during c-tsDCS and elimination of the persistent response was observed. Our experimental findings, supported by computer simulation, show that c-tsDCS can target Ca2+ conductances to augment motoneuron activity. As tsDCS is well-tolerated in humans, this knowledge informs therapeutic treatment strategies to achieve rehabilitation goals after injury; in particular, to increase muscle force.
Collapse
Affiliation(s)
- Weiguo Song
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, United States.,Neuroscience Program, Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
10
|
Jankowska E, Hammar I. The plasticity of nerve fibers: the prolonged effects of polarization of afferent fibers. J Neurophysiol 2021; 126:1568-1591. [PMID: 34525323 DOI: 10.1152/jn.00718.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The review surveys various aspects of the plasticity of nerve fibers, in particular the prolonged increase in their excitability evoked by polarization, focusing on a long-lasting increase in the excitability of myelinated afferent fibers traversing the dorsal columns of the spinal cord. We review the evidence that increased axonal excitability 1) follows epidurally applied direct current (DC) as well as relatively short (5 or 10 ms) current pulses and synaptically evoked intrinsic field potentials; 2) critically depends on the polarization of branching regions of afferent fibers at the sites where they bifurcate and give off axon collaterals entering the spinal gray matter in conjunction with actions of extrasynaptic GABAA membrane receptors; and 3) shares the feature of being activity-independent with the short-lasting effects of polarization of peripheral nerve fibers. A comparison between the polarization evoked sustained increase in the excitability of dorsal column fibers and spinal motoneurons (plateau potentials) indicates the possibility that they are mediated by partly similar membrane channels (including noninactivating type L Cav++ 1.3 but not Na+ channels) and partly different mechanisms. We finally consider under which conditions transspinally applied DC (tsDCS) might reproduce the effects of epidural polarization on dorsal column fibers and the possible advantages of increased excitability of afferent fibers for the rehabilitation of motor and sensory functions after spinal cord injuries.NEW & NOTEWORTHY This review supplements previous reviews of properties of nerve fibers by surveying recent experimental evidence for their long-term plasticity. It also extends recent descriptions of spinal effects of DC by reviewing effects of polarization of afferent nerve fibers within the dorsal columns, the mechanisms most likely underlying the long-lasting increase in their excitability and possible clinical implications.
Collapse
Affiliation(s)
- Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingela Hammar
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Bączyk M, Krutki P, Zytnicki D. Is there hope that transpinal direct current stimulation corrects motoneuron excitability and provides neuroprotection in amyotrophic lateral sclerosis? Physiol Rep 2021; 9:e14706. [PMID: 33463907 PMCID: PMC7814489 DOI: 10.14814/phy2.14706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of largely unknown pathophysiology, characterized by the progressive loss of motoneurons (MNs). We review data showing that in presymptomatic ALS mice, MNs display reduced intrinsic excitability and impaired level of excitatory inputs. The loss of repetitive firing specifically affects the large MNs innervating fast contracting muscle fibers, which are the most vulnerable MNs in ALS. Interventions that aimed at restoring either the intrinsic excitability or the synaptic excitation result in a decrease of disease markers in MNs and delayed neuromuscular junction denervation. We then focus on trans‐spinal direct current stimulation (tsDCS), a noninvasive tool, since it modulates the activity of spinal neurons and networks. Effects of tsDCS depend on the polarity of applied current. Recent work shows that anodal tsDCS induces long‐lasting enhancement of MN excitability and synaptic excitation of spinal MNs. Moreover, we show preliminary results indicating that anodal tsDCS enhances the excitatory synaptic inputs to MNs in ALS mice. In conclusion, we suggest that chronic application of anodal tsDCS might be useful as a complementary method in the management of ALS patients.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland
| | - Piotr Krutki
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland
| | - Daniel Zytnicki
- Université de Paris, Centre National de la Recherche Scientifique (CNRS), Saints-Pères Paris Institute for the Neurosciences (SPPIN), Paris, France
| |
Collapse
|
12
|
Bączyk M, Drzymała-Celichowska H, Mrówczyński W, Krutki P. Polarity-dependent adaptations of motoneuron electrophysiological properties after 5-wk transcutaneous spinal direct current stimulation in rats. J Appl Physiol (1985) 2020; 129:646-655. [DOI: 10.1152/japplphysiol.00301.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcutaneous spinal direct current stimulation applied systematically for 5 wk evoked polarity-dependent adaptations in the electrophysiological properties of rat spinal motoneurons. After anodal polarization sessions, motoneurons became more excitable and could evoke higher maximum discharge frequencies during repetitive firing than motoneurons in the sham polarization group. However, no significant adaptive changes of motoneuron properties were observed after repeated cathodal polarization in comparison with the sham control group.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Hanna Drzymała-Celichowska
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
- Department of Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | | | - Piotr Krutki
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|