1
|
Shaqfah J, Kang W, Gaudette F, Khalil M, Kwan C, Belliveau S, Bourgeois-Cayer É, Hamadjida A, Bédard D, Beaudry F, Huot P. The anti-dyskinetic effect of the clinic-ready mGluR 2 positive allosteric modulator AZD8529 in the 6-OHDA-lesioned rat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03627-1. [PMID: 39841218 DOI: 10.1007/s00210-024-03627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/10/2024] [Indexed: 01/23/2025]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) remains the main treatment for motor symptoms of Parkinson's disease (PD). However, chronic use is associated with the development of complications such as L-DOPA-induced dyskinesia. We previously demonstrated that LY-487,379, a highly selective metabotropic glutamate receptor 2 (mGluR2) positive allosteric modulator (PAM), reduces the severity of L-DOPA-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD, without interfering with the anti-parkinsonian action of L-DOPA. Here, we seek to determine the effect of AZD8529, another highly selective mGluR2 PAM, on L-DOPA-induced AIMs in the 6-OHDA-lesioned rat. Unlike LY-487,379, AZD8529 has previously undergone clinical trials and could therefore be repurposed if proven efficacious in pre-clinical studies. We first determined the pharmacokinetic (PK) profile of AZD8529 to administer doses leading to clinically relevant plasma levels in the behavioural studies. Then, dyskinetic 6-OHDAlesioned rats were administered AZD8529 (0.1, 0.3, and 1 mg/kg) or vehicle in combination with L-DOPA followed by assessment of AIMs severity. The cylinder test was then used to evaluate the effect of AZD8529 on the anti-parkinsonian action of L-DOPA. We found that AZD8529 (0.1, 0.3 and 1 mg/kg) in combination with L-DOPA significantly reduced the severity of AIMs duration (P < 0.05), but not amplitude, when compared to L-DOPA/vehicle. AZD8529 administration did not interfere with L-DOPA anti-parkinsonian action. Our results provide evidence that mGluR2 positive allosteric modulation with AZD8529 may be a viable, yet relatively modest, treatment strategy to alleviate L-DOPA-induced.
Collapse
Affiliation(s)
- Judy Shaqfah
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Woojin Kang
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Fleur Gaudette
- Plateforme de Pharmacocinétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Marianne Khalil
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Cynthia Kwan
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Élodie Bourgeois-Cayer
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Dominique Bédard
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
2
|
Kang W, Frouni I, Bédard D, Kwan C, Hamadjida A, Nuara SG, Gourdon JC, Huot P. Positive allosteric mGluR 2 modulation with BINA alleviates dyskinesia and psychosis-like behaviours in the MPTP-lesioned marmoset. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8917-8924. [PMID: 38861009 DOI: 10.1007/s00210-024-03215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
There is mounting evidence that positive allosteric modulation of metabotropic glutamate type 2 receptors (mGluR2) is an efficacious approach to reduce the severity of L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia, psychosis-like behaviours (PLBs), while conferring additional anti-parkinsonian benefit. However, the mGluR2 positive allosteric modulators (PAMs) tested so far, LY-487,379 and CBiPES, share a similar chemical scaffold. Here, we sought to assess whether similar benefits would be conferred by a structurally-distinct mGluR2 PAM, biphenylindanone A (BINA). Six 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmosets exhibiting dyskinesia and PLBs were administered L-DOPA with either vehicle or BINA (0.1, 1, and 10 mg/kg) in a randomised within-subject design and recorded. Behaviour was analysed by a blinded rater who scored the severity of each of parkinsonism, dyskinesia and PLBs. When added to L-DOPA, BINA 0.1 mg/kg, 1 mg/kg, and 10 mg/kg all significantly reduced the severity of global dyskinesia, by 40%, 52% and 53%, (all P < 0.001) respectively. BINA similarly attenuated the severity of global PLBs by 35%, 48%, and 50%, (all P < 0.001) respectively. Meanwhile, BINA did not alter the effect of L-DOPA on parkinsonism exhibited by the marmosets. The results of this study provide incremental evidence of positive allosteric modulation of mGluR2 as an effective therapeutic strategy for alleviating dyskinesia and PLBs, without hindering the anti-parkinsonian action of L-DOPA. Furthermore, this therapeutic benefit does not appear to be confined to a particular chemical scaffold.
Collapse
Affiliation(s)
- Woojin Kang
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada.
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
3
|
Kang W, Frouni I, Kwan C, Bédard D, Nuara SG, Hamadjida A, Gourdon JC, Huot P. Effect of the mGlu 2 positive allosteric modulator biphenyl-indanone A as a monotherapy and as adjunct to a low dose of L-DOPA in the MPTP-lesioned marmoset. Eur J Neurosci 2024; 60:6175-6184. [PMID: 38936819 DOI: 10.1111/ejn.16454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Activation of metabotropic glutamate 2 (mGlu2) receptors is a potential novel therapeutic approach for the treatment of parkinsonism. Thus, when administered as monotherapy or as adjunct to a low dose of L-3,4-dihydroxyphenylalanine (L-DOPA), the mGlu2 positive allosteric modulator (PAM) LY-487,379 alleviated parkinsonism in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primates. Here, we sought to investigate the effect of biphenyl-indanone A (BINA), a highly selective mGlu2 PAM whose chemical scaffold is unrelated to LY-487,379, to determine if a structurally different mGlu2 PAM would also confer anti-parkinsonian benefit. In monotherapy experiments, MPTP-lesioned marmosets were injected with either vehicle, L-DOPA/benserazide (15/3.75 mg/kg, positive control) or BINA (0.1, 1, 10 mg/kg). In adjunct to a low L-DOPA dose experiments, MPTP-lesioned marmosets were injected with L-DOPA/benserazide (7.5/1.875 mg/kg) in combination with vehicle or BINA (0.1, 1, 10 mg/kg). Parkinsonism, dyskinesia and psychosis-like behaviours (PLBs) were then quantified. When administered alone, BINA 1 and 10 mg/kg decreased parkinsonism severity by ~22% (p < 0.01) and ~47% (p < 0.001), when compared with vehicle, which was comparable with the global effect of a high L-DOPA dose. When administered in combination with a low L-DOPA dose, BINA 1 and 10 mg/kg decreased global parkinsonism by ~38% (p < 0.001) and ~53% (p < 0.001). BINA 10 mg/kg decreased global dyskinesia by ~94% (p < 0.01) and global PLBs by ~92% (p < 0.01). Our results provide additional evidence that mGlu2 positive allosteric modulation elicits anti-parkinsonian effects. That this benefit is not related to a particular chemical scaffold suggests that it may be a class effect rather than the effect of a specific molecule.
Collapse
Affiliation(s)
- Woojin Kang
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Imane Frouni
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Cynthia Kwan
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Dominique Bédard
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
4
|
Kim E, Frouni I, Shaqfah J, Bédard D, Huot P. Autoradiographic labelling of metabotropic glutamate type 2/3 receptors in the hemi-parkinsonian rat brain. J Chem Neuroanat 2024; 138:102422. [PMID: 38657828 DOI: 10.1016/j.jchemneu.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) is the treatment of choice for Parkinson's disease (PD) motor symptoms, but its chronic use is hindered by complications such as dyskinesia. Pre-clinical studies discovered that activation of metabotropic glutamate type 2 and 3 (mGlu2/3) receptors alleviates L-DOPA-induced dyskinesia. To gain mechanistic insight into the anti-dyskinetic activity of mGlu2/3 activation, we performed autoradiographic binding with [3H]-LY-341,495 in brain sections from L-DOPA-treated 6-hydroxydopamine (6-OHDA)-lesioned rats that developed mild or severe dyskinesia, as well as L-DOPA-untreated 6-OHDA-lesioned and sham-lesioned animals. In the ipsilateral hemisphere, mildly dyskinetic 6-OHDA-lesioned rats showed a decrease in [3H]-LY-341,495 binding in the entopeduncular nucleus (EPN, 30 % vs sham-lesioned rats, P<0.05), globus pallidus (GP, 28 % vs sham-lesioned rats, P<0.05; 23 % vs L-DOPA-untreated 6-OHDA-lesioned rats, P<0.001), and primary motor cortex (49 % vs sham-lesioned rats, P<0.05; 45 % vs L-DOPA-untreated 6-OHDA-lesioned rats, P<0.001). Severely dyskinetic 6-OHDA-lesioned rats exhibited an increase in binding in the primary motor cortex (43 % vs mildly dyskinetic 6-OHDA-lesioned rats, P<0.05). In the contralateral hemisphere, mildly dyskinetic 6-OHDA-lesioned rats harboured a decrease in binding in the EPN (30 % vs sham-lesioned rats; 24 % vs L-DOPA-untreated 6-OHDA-lesioned rats, both P<0.05), GP (34 % vs sham-lesioned rats, P<0.05; 23 % vs L-DOPA-untreated 6-OHDA-lesioned rats, P<0.001), and primary motor cortex (50 % vs sham-lesioned rats; 44 % vs L-DOPA-untreated 6-OHDA-lesioned rats, both P<0.05). Severely dyskinetic 6-OHDA-lesioned rats presented a decrease in binding in the GP (30 % vs sham-lesioned rats; 19 % vs L-DOPA-untreated 6-OHDA-lesioned rats, both P<0.05). Abnormal involuntary movements scores of 6-OHDA-lesioned animals were positively correlated with [3H]-LY-341,495 binding in the ipsilateral striatum, ipsilateral EPN, ipsilateral primary motor cortex and contralateral primary motor cortex (all P<0.05). These results suggest that alterations in mGlu2/3 receptor levels may be part of an endogenous compensatory mechanism to alleviate dyskinesia.
Collapse
Affiliation(s)
- Esther Kim
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Judy Shaqfah
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
5
|
Kang W, Frouni I, Kwan C, Desbiens L, Hamadjida A, Huot P. Activation of mGlu 2/3 receptors with the orthosteric agonist LY-404,039 alleviates dyskinesia in experimental parkinsonism. Behav Pharmacol 2024; 35:185-192. [PMID: 38563661 DOI: 10.1097/fbp.0000000000000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
LY-404,039 is an orthosteric agonist at metabotropic glutamate 2 and 3 (mGlu 2/3 ) receptors, with a possible additional agonist effect at dopamine D 2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously been tested in clinical trials for psychiatric indications and could therefore be repurposed if they were shown to be efficacious in other conditions. We have recently demonstrated that the mGlu 2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat without hampering the anti-parkinsonian action of L-DOPA. Here, we seek to take advantage of a possible additional D 2 -agonist effect of LY-404,039 and see if an anti-parkinsonian benefit might be achieved in addition to the antidyskinetic effect of mGlu 2/3 activation. To this end, we have administered LY-404,039 (vehicle, 0.1, 1 and 10 mg/kg) to 6-OHDA-lesioned rats, after which the severity of axial, limbs and oro-lingual (ALO) AIMs was assessed. The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of ALO AIMs over 60-100 min (54%, P < 0.05). In addition, LY-404,039 significantly enhanced the antiparkinsonian effect of L-DOPA, assessed through the cylinder test (76%, P < 0.01). These results provide further evidence that mGlu 2/3 orthosteric stimulation may alleviate dyskinesia in PD and, in the specific case of LY-404,039, a possible D 2 -agonist effect might also make it attractive to address motor fluctuations. Because LY-404,039 and its pro-drug have been administered to humans, they could possibly be advanced to Phase IIa trials rapidly for the treatment of motor complications in PD.
Collapse
Affiliation(s)
- Woojin Kang
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro)
| | - Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro)
- Département de Pharmacologie et Physiologie, Université de Montréal
| | - Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro)
| | - Louis Desbiens
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro)
| | - Adjia Hamadjida
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro)
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro)
- Département de Pharmacologie et Physiologie, Université de Montréal
- Department of Neurology and Neurosurgery, McGill University
- Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
6
|
Frouni I, Kim E, Shaqfah J, Bédard D, Kwan C, Belliveau S, Huot P. [ 3H]-NFPS binding to the glycine transporter 1 in the hemi-parkinsonian rat brain. Exp Brain Res 2024; 242:1203-1214. [PMID: 38526743 PMCID: PMC11078860 DOI: 10.1007/s00221-024-06815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) is the main treatment for Parkinson's disease (PD) but with long term administration, motor complications such as dyskinesia are induced. Glycine transporter 1 (GlyT1) inhibition was shown to produce an anti-dyskinetic effect in parkinsonian rats and primates, coupled with an improvement in the anti-parkinsonian action of L-DOPA. The expression of GlyT1 in the brain in the dyskinetic state remains to be investigated. Here, we quantified the levels of GlyT1 across different brain regions using [3H]-NFPS in the presence of Org-25,935. Brain sections were chosen from sham-lesioned rats, L-DOPA-naïve 6-hydroxydopamine (6-OHDA)-lesioned rats and 6-OHDA-lesioned rats exhibiting mild or severe abnormal involuntary movements (AIMs). [3H]-NFPS binding decreased in the ipsilateral and contralateral thalamus, by 28% and 41%, in 6-OHDA-lesioned rats with severe AIMs compared to sham-lesioned animals (P < 0.01 and 0.001). [3H]-NFPS binding increased by 21% in the ipsilateral substantia nigra of 6-OHDA-lesioned rats with severe AIMs compared to 6-OHDA-lesioned rats with mild AIMs (P < 0.05). [3H]-NFPS binding was lower by 19% in the contralateral primary motor cortex and by 20% in the contralateral subthalamic nucleus of 6-OHDA-lesioned rats with mild AIMs animals compared to rats with severe AIMs (both P < 0.05). The severity of AIMs scores positively correlated with [3H]-NFPS binding in the ipsilateral substantia nigra (P < 0.05), ipsilateral entopeduncular nucleus (P < 0.05) and contralateral primary motor cortex (P < 0.05). These data provide an anatomical basis to explain the efficacy of GlyT1 inhibitors in dyskinesia in PD.
Collapse
Affiliation(s)
- Imane Frouni
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Esther Kim
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Judy Shaqfah
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Philippe Huot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada.
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
7
|
Kang W, Nuara SG, Bédard D, Frouni I, Kwan C, Hamadjida A, Gourdon JC, Gaudette F, Beaudry F, Huot P. The mGluR 2/3 orthosteric agonist LY-404,039 reduces dyskinesia, psychosis-like behaviours and parkinsonism in the MPTP-lesioned marmoset. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2347-2355. [PMID: 37410156 DOI: 10.1007/s00210-023-02587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/06/2022] [Indexed: 07/07/2023]
Abstract
LY-404,039 is an orthosteric agonist of metabotropic glutamate 2 and 3 receptors (mGluR2/3) that may harbour additional agonist effect at dopamine D2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously entered clinical trials as treatment options for schizophrenia. They could therefore be repurposed, if proven efficacious, for other conditions, notably Parkinson's disease (PD). We have previously shown that the mGluR2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia and psychosis-like behaviours (PLBs) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. Unlike LY-404,039, LY-354,740 does not stimulate dopamine D2 receptors, suggesting that LY-404,039 may elicit broader therapeutic effects in PD. Here, we sought to investigate the effect of this possible additional dopamine D2-agonist action of LY-404,039 by assessing its efficacy on dyskinesia, PLBs and parkinsonism in the MPTP-lesioned marmoset. We first determined the pharmacokinetic profile of LY-404,039 in the marmoset, in order to select doses resulting in plasma concentrations known to be well tolerated in the clinic. Marmosets were then injected L-DOPA with either vehicle or LY-404,039 (0.1, 0.3, 1 and 10 mg/kg). The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of global dyskinesia (by 55%, P < 0.01) and PLBs (by 50%, P < 0.05), as well as reduction of global parkinsonism (by 47%, P < 0.05). Our results provide additional support of the efficacy of mGluR2/3 orthosteric stimulation at alleviating dyskinesia, PLBs and parkinsonism. Because LY-404,039 has already been tested in clinical trials, it could be repurposed for indications related to PD.
Collapse
Affiliation(s)
- Woojin Kang
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Dominique Bédard
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Imane Frouni
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Cynthia Kwan
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Adjia Hamadjida
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Fleur Gaudette
- Plateforme de Pharmacocinétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Philippe Huot
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
8
|
Kang MS, Hamadjida A, Bédard D, Nuara SG, Gourdon JC, Frey S, Aliaga A, Ross K, Hopewell R, Bdair H, Mathieu A, Tardif CL, Soucy JP, Massarweh G, Rosa-Neto P, Huot P. Distribution of [ 11C]-JNJ-42491293 in the marmoset brain: a positron emission tomography study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2095-2103. [PMID: 36928556 DOI: 10.1007/s00210-023-02458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
JNJ-42491293 is a metabotropic glutamate 2 (mGlu2) positive allosteric modulator (PAM) that was radiolabelled with [11C]- to serve as a positron emission tomography (PET) ligand. Indeed, in vitro, the molecule displays high selectivity at mGlu2 receptors. However, PET experiments performed in rats, macaques and humans, have suggested that [11C]-JNJ-42491293 could interact with an unidentified, non-mGlu2 receptor binding site. The brain distribution of [11C]-JNJ-42491293 has not been determined in the brain of the common marmoset, a small non-human primate increasingly used in neuroscience research. Here, we investigated the distribution of [11C]-JNJ-42491293 in the marmoset brain. Three marmosets underwent brain magnetic resonance imaging (MRI) and 90-min dynamic PET scans with [11C]-JNJ-42491293 in combination with vehicle or the mGlu2 PAM AZD8529 (0.1, 1 and 10 mg/kg). In the scans in which [11C]-JNJ-42491293 was co-administered with vehicle, the brain areas with the highest standardised uptake values (SUVs) were the midbrain, cerebellum and thalamus, while the lowest SUVs were found in the pons. The addition of AZD8529 (0.1, 1 and 10 mg/kg) to [11C]-JNJ-42491293 did not modify the SUVs obtained with [11C]-JNJ-42491293 alone, and ex vivo blocking autoradiography with PAM AZD8529 (10, 100, 300 µM) on marmoset brain sections showed increased signals in the blocking conditions compared to vehicle, suggesting that no competition occurred between the 2 ligands. The results we obtained here do not suggest that [11C]-JNJ-42491293 interacts selectively, or even at all, with mGlu2 receptors in the marmoset, in agreement with findings previously reported in macaque and human.
Collapse
Affiliation(s)
- Min Su Kang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada
- Douglas Research Centre, McGill University, Montreal, QC, Canada
- Artificial Intelligence and Computational Neurosciences Lab, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | | | - Arturo Aliaga
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada
- Douglas Research Centre, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Karen Ross
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Robert Hopewell
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Hussein Bdair
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Axel Mathieu
- Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Christine Lucas Tardif
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Jean-Paul Soucy
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Gassan Massarweh
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada
- Douglas Research Centre, McGill University, Montreal, QC, Canada
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
9
|
Anti-parkinsonian effect of the mGlu 2 positive allosteric modulator LY-487,379 as monotherapy and adjunct to a low L-DOPA dose in the MPTP-lesioned marmoset. Eur J Pharmacol 2023; 939:175429. [PMID: 36502960 DOI: 10.1016/j.ejphar.2022.175429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
In previous experiments, we have discovered that positive allosteric modulation of metabotropic glutamate 2 (mGlu2) receptors enhances the anti-parkinsonian action of an optimal dose of L-3,4-dihydroxyphenylalanine (L-DOPA). Whether selective mGlu2 positive allosteric modulation would also alleviate parkinsonian disability as monotherapy or as adjunct to a sub-optimal dose of L-DOPA has not been determined. Here, we assessed the anti-parkinsonian effect of mGlu2 positive allosteric modulation as monotherapy and adjunct to a sub-optimal dose of L-DOPA in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmosets. The highly selective positive allosteric modulator (PAM) LY-487,379 was utilised to activate mGlu2 receptors. When administered as monotherapy, LY-487,379 10 mg/kg diminished global parkinsonism by 48% (P < 0.001) and increased duration of on-time by 7-fold, when compared to vehicle treatment (P < 0.05). When added to a sub-optimal dose of L-DOPA, LY-487,379 10 mg/kg decreased global parkinsonism by 44% (P < 0.001) and extended duration of on-time by 2.5-fold (P < 0.01). Our results indicate that selective mGlu2 positive allosteric modulation elicits anti-parkinsonian benefits as monotherapy and as adjunct to sub-optimal dose of L-DOPA paradigms, potentially suggesting that mGlu2 PAMs may have a therapeutic niche early in the treatment of PD as DOPA-sparing agents.
Collapse
|
10
|
Kwan C, Kang W, Kim E, Belliveau S, Frouni I, Huot P. Metabotropic glutamate receptors in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:1-31. [PMID: 36868628 DOI: 10.1016/bs.irn.2022.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Parkinson's disease (PD) is a complex disorder that leads to alterations in multiple neurotransmitter systems, notably glutamate. As such, several drugs acting at glutamatergic receptors have been assessed to alleviate the manifestation of PD and treatment-related complications, culminating with the approval of the N-methyl-d-aspartate (NMDA) antagonist amantadine for l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia. Glutamate elicits its actions through several ionotropic and metabotropic (mGlu) receptors. There are 8 sub-types of mGlu receptors, with sub-types 4 (mGlu4) and 5 (mGlu5) modulators having been tested in the clinic for endpoints pertaining to PD, while sub-types 2 (mGlu2) and 3 (mGlu3) have been investigated in pre-clinical settings. In this book chapter, we provide an overview of mGlu receptors in PD, with a focus on mGlu5, mGlu4, mGlu2 and mGlu3 receptors. For each sub-type, we review, when applicable, their anatomical localization and possible mechanisms underlying their efficacy for specific disease manifestation or treatment-induced complications. We then summarize the findings of pre-clinical studies and clinical trials with pharmacological agents and discuss the potential strengths and limitations of each target. We conclude by offering some perspectives on the potential use of mGlu modulators in the treatment of PD.
Collapse
Affiliation(s)
- Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Woojin Kang
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Esther Kim
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
11
|
Nuara SG, Gourdon JC, Huot P. Evaluation of the effects of the mGlu 2/3 antagonist LY341495 on dyskinesia and psychosis-like behaviours in the MPTP-lesioned marmoset. Pharmacol Rep 2022; 74:614-625. [PMID: 35761013 DOI: 10.1007/s43440-022-00378-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND We have previously demonstrated that the metabotropic glutamate 2 and 3 (mGlu2/3) antagonist LY341495 reverses the anti-dyskinetic and anti-psychotic benefits conferred by mGlu2 activation and serotonin 2A (5-HT2A) antagonism. Here, we hypothesised that a higher dose of LY341495, associated with a higher antagonistic effect at mGlu3 receptors, would result in a reduction of the reversal of mGlu2 activation and 5-HT2A blockade on dyskinesia, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. METHODS After induction of parkinsonism with MPTP, marmosets entered 3 streams of experiments, in which the following treatments were administered, in combination with l-3,4-dihydroxyphenylalanine (L-DOPA), after which dyskinesia, psychosis-like behaviours (PLBs) and parkinsonism were rated: 1. vehicle/vehicle, LY354740 (mGlu2/3 orthosteric agonist)/vehicle, LY354740/LY341495 1 mg/kg and LY354740/LY341495 3 mg/kg; 2. vehicle/vehicle, LY487379 (mGlu2 positive allosteric modulator)/vehicle, LY487379/LY341495 1 mg/kg and LY487379/LY341495 3 mg/kg; 3. vehicle/vehicle, EMD-281,014 (5-HT2A antagonist)/vehicle, EMD-281,014/LY341495 1 mg/kg and EMD-281,014/LY341495 3 mg/kg. RESULTS Each of LY354740, LY487379 and EMD-281,014 reduced the severity of L-DOPA-induced dyskinesia, by 55%, 39% and 40%, respectively (all p < 0.001), as well as the severity of PLBs, by 48%, 36% and 41%, respectively (all p < 0.001). Adding LY341495 1 and 3 mg/kg to each of LY354740, LY487379 and EMD-281,014 resulted in a dose-dependent reversal of their anti-dyskinetic and anti-psychotic actions. No effect on the anti-parkinsonian action of L-DOPA was noted with any treatment combination. CONCLUSION These results suggest that an antagonistic effect at mGlu3 receptors may not be sufficient to overcome the deleterious effect of mGlu2 blockade on dyskinesia in PD. It remains to be seen whether similar effects would have been obtained with a selective mGlu3 antagonist.
Collapse
Affiliation(s)
- Stephen G Nuara
- Comparative Medicine and Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine and Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada. .,Division of Neurology, Department of Neurosciences, Movement Disorder Clinic, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
12
|
Qin X, Zhang X, Li P, Wang M, Yan L, Pan P, Zhang H, Hong X, Liu M, Bao Z. MicroRNA-185 activates PI3K/AKT signalling pathway to alleviate dopaminergic neuron damage via targeting IGF1 in Parkinson's disease. J Drug Target 2021; 29:875-883. [PMID: 33560148 DOI: 10.1080/1061186x.2021.1886300] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Studies have extensively explored the role of microRNAs (miRs) in Parkinson's disease (PD) and miR-185 is related to autophagy and apoptosis of dopaminergic neurons in PD. However, the role of miR-185 mediating insulin-like growth factor 1 (IGF1)/phosphatidylinositol-3-kinase/protein kinase B signalling pathway (PI3K/AKT) in PD still needs in-depth exploration. METHODS Rat PD models were established by injection of 6-hydroxydopamine. PD rats were injected with miR-185 or insulin-like growth factor 1 (IGF1)-related sequences. Behaviour tests were performed, oxidative stress-related factors, tyrosine hydroxylase (TH)-, glial fibrillary acidic protein (GFAP)-, ionised calcium-binding adaptor molecule-1 (Iba-1)- and TUNEL-positive cells in the substantia nigra were determined. Levels of miR-185, IGF1 and phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signalling pathway-related factors were also detected. RESULTS miR-185 level was reduced in rats with PD. Restoring miR-185 promoted behaviour functions, ameliorated pathological damages and oxidative stress, increased TH-positive dopaminergic neurons, decreased GFAP- and Iba-1-positive cells and restrained neuronal apoptosis in the substantia nigra in PD rats. miR-185 targeted IGF1 to activate PI3K/AKT signalling pathway. Up-regulation of IGF1 mitigated restored miR-185-mediated effects on PD rats. CONCLUSION This study illustrates that miR-185 ameliorates dopaminergic neuron damage via targeting IGF1 and activating PI3K/AKT signalling pathway in PD, which renews the therapy for PD.
Collapse
Affiliation(s)
| | - Xia Zhang
- Zhaoqing Medical College, Zhaoqing, China
| | - Pinyu Li
- Zhaoqing Medical College, Zhaoqing, China
| | - Min Wang
- Zhaoqing Medical College, Zhaoqing, China
| | - Li Yan
- Zhaoqing Medical College, Zhaoqing, China
| | | | | | | | - Muxi Liu
- Zhaoqing Medical College, Zhaoqing, China
| | - Zeqing Bao
- Zhaoqing Medical College, Zhaoqing, China
| |
Collapse
|
13
|
Kwan C, Frouni I, Nuara SG, Belliveau S, Kang W, Hamadjida A, Bédard D, Beaudry F, Panisset M, Gourdon JC, Huot P. Combined 5-HT 2A and mGlu 2 modulation for the treatment of dyskinesia and psychosis in Parkinson's disease. Neuropharmacology 2021; 186:108465. [PMID: 33485945 DOI: 10.1016/j.neuropharm.2021.108465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
Antagonising the serotonin 2A (5-HT2A) receptor is an efficacious way to alleviate dyskinesia and psychosis in Parkinson's disease (PD). However, previous research indicates that there might be a limit to the effects conferred by this approach. 5-HT2A receptors were shown to form hetero-dimers with metabotropic glutamate 2 (mGlu2) receptors, in which 5-HT2A blockade and mGlu2 activation elicit equivalent effects at the downstream signalling level. We have previously shown that mGlu2 activation reduces both dyskinesia and psychosis-like behaviours (PLBs) induced by L-3,4-dihydroxyphenylalanine (l-DOPA), in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primate. Here, we hypothesised that concurrent 5-HT2A antagonism and mGlu2 activation would provide greater anti-dyskinetic and anti-psychotic benefits than either approach alone. We conducted 3 series of experiments in the MPTP-lesioned marmoset. In the first series of experiments, the mGlu2 positive allosteric modulator LY-487,379 and the 5-HT2A antagonist EMD-281,014, either alone or in combination, were added to l-DOPA. In the second series of experiments, the mGlu2/3 orthosteric agonist LY-354,740 and EMD-281,014, either alone or in combination, were added to l-DOPA. In the last series of experiments, we investigated whether mGlu2 blockade would diminish the effects of antagonising 5-HT2A receptors. To this end, the mGlu2/3 orthosteric antagonist LY-341,495 and EMD-281,014, either alone or in combination, were added to l-DOPA. We found that the anti-dyskinetic effect of the combination LY-487,379/EMD-281,014 was greater than the ones conferred by LY-487,379 (by 35%, P < 0.05) and EMD-281,014 (by 38%, P < 0.01). The anti-dyskinetic and anti-psychotic effects of the combination LY-354,740/EMD-281,014 were also greater than the ones conferred by LY-354,740 (by 57% for dyskinesia and 54% for PLBs, both P < 0.001) and EMD-281,014 (by 61% for dyskinesia and 53% for PLBs, both P < 0.001). The anti-parkinsonian action of l-DOPA was maintained with all treatments. Lastly, the addition of LY-341,495 abolished the therapeutic effects of EMD-281,014 on dyskinesia and PLBs. Our results suggest that mGlu2 activation may enhance the anti-dyskinetic and anti-psychotic effects of 5-HT2A blockade and could provide relief to PD patients with dyskinesia and psychotic symptoms beyond what can be achieved with current therapies.
Collapse
Affiliation(s)
- Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Woojin Kang
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animale Du Québec, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Michel Panisset
- Unité des Troubles Du Mouvement André-Barbeau, Service de Neurologie, Département de Médecine, Centre Hospitalier de L'Université de Montréal, Montreal, QC, Canada; Département de Neurosciences, Université de Montréal, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
14
|
Frouni I, Kwan C, Nuara SG, Belliveau S, Kang W, Hamadjida A, Bédard D, Gourdon JC, Huot P. Effect of the mGlu 2 positive allosteric modulator CBiPES on dyskinesia, psychosis-like behaviours and parkinsonism in the MPTP-lesioned marmoset. J Neural Transm (Vienna) 2021; 128:73-81. [PMID: 33392826 DOI: 10.1007/s00702-020-02287-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/08/2020] [Indexed: 11/24/2022]
Abstract
Advanced Parkinson's disease (PD) is often complicated by the occurrence of dyskinesia, motor fluctuations and psychosis. To this day, few treatment options are available for each of these phenomena, and they are at times not effective or elicit adverse events, leaving some patients short of therapeutic options. We have recently shown that positive allosteric modulation of metabotropic 2 (mGlu2) receptors with the prototypical positive allosteric modulator (PAM) LY-487,379 is efficacious at alleviating both dyskinesia and psychosis-like behaviours (PLBs), while simultaneously enhancing the anti-parkinsonian action of L-3,4-dihydroxyphenylalanine (L-DOPA), in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. Here, we assessed the effects of CBiPES, a mGlu2 PAM derived from LY-487,379, but with improved pharmacokinetic properties. Six MPTP-lesioned marmosets with reproducible dyskinesia and PLBs were administered L-DOPA in combination with vehicle or CBiPES (0.1, 1 and 10 mg/kg), after which their behaviour was rated. CBiPES 10 mg/kg reduced global dyskinesia by 60% (P < 0.0001), while peak dose dyskinesia was reduced by 66% (P < 0.001), compared to L-DOPA/vehicle. CBiPES 10 mg/kg also diminished global PLBs by 56% (P < 0.0001), while peak dose PLBs were reduced by 64% (P < 0.001), compared to L-DOPA/vehicle. Lastly, CBiPES enhanced the anti-parkinsonian action of L-DOPA, by reducing global parkinsonian disability by 43% (P < 0.01), compared to L-DOPA/vehicle. Our results provide further evidence that mGlu2 positive allosteric modulation may be an approach that could be efficacious for the treatment of dyskinesia, psychosis and motor fluctuations in PD.
Collapse
Affiliation(s)
- Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada.,Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Woojin Kang
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada. .,Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada. .,Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|