1
|
Martínez-Gallego I, Rodríguez-Moreno A. Adenosine and Cortical Plasticity. Neuroscientist 2025; 31:47-64. [PMID: 38497585 DOI: 10.1177/10738584241236773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Brain plasticity is the ability of the nervous system to change its structure and functioning in response to experiences. These changes occur mainly at synaptic connections, and this plasticity is named synaptic plasticity. During postnatal development, environmental influences trigger changes in synaptic plasticity that will play a crucial role in the formation and refinement of brain circuits and their functions in adulthood. One of the greatest challenges of present neuroscience is to try to explain how synaptic connections change and cortical maps are formed and modified to generate the most suitable adaptive behavior after different external stimuli. Adenosine is emerging as a key player in these plastic changes at different brain areas. Here, we review the current knowledge of the mechanisms responsible for the induction and duration of synaptic plasticity at different postnatal brain development stages in which adenosine, probably released by astrocytes, directly participates in the induction of long-term synaptic plasticity and in the control of the duration of plasticity windows at different cortical synapses. In addition, we comment on the role of the different adenosine receptors in brain diseases and on the potential therapeutic effects of acting via adenosine receptors.
Collapse
Affiliation(s)
- Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| |
Collapse
|
2
|
Silva NR, Arjmand S, Domingos LB, Chaves-Filho AM, Mottin M, Real CC, Waszkiewicz AL, Gobira PH, Ferraro AN, Landau AM, Andrade CH, Müller HK, Wegener G, Joca SRL. Modulation of the endocannabinoid system by (S)-ketamine in an animal model of depression. Pharmacol Res 2025; 211:107545. [PMID: 39667543 DOI: 10.1016/j.phrs.2024.107545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Ketamine (KET) is recognized as rapid-acting antidepressant, but its mechanisms of action remain elusive. Considering the role of endocannabinoids (eCB) in stress and depression, we investigated if S-KET antidepressant effects involve the regulation of the eCB system using an established rat model of depression based on selective breeding: the Flinders Sensitive Line (FSL) and their controls, the Flinders Resistant Line (FRL). S-KET (15 mg/kg) effects were assessed in rats exposed to the open field and forced swimming test (FST), followed by analysis of the eCB signaling in the rat prefrontal cortex (PFC), a brain region involved in depression neurobiology. Changes in eCB receptors and enzymes were assessed at mRNA and protein levels (qPCR and western blot), CB1 binding ([3H]SR141716A autoradiography) and endocannabinoid content (lipidomics). The results demonstrated that the depressive behavior in FSL was negatively correlated with 2-AG levels, which were restored upon acute S-KET treatment. Although S-KET decreased CB1 and FAAH gene expression in FSL, there were no significant changes at protein levels. [3H]SR141716A binding to CB1 receptors was increased by S-KET and in silico analysis suggested that it binds to CB1, CB2, GPR55 and FAAH. Overall, S-KET effects correlated with an increased endocannabinoid signaling in the PFC, but systemic treatment with rimonabant failed to block its behavioral effects. Altogether, our results indicate that S-KET facilitates eCB signaling in the PFC of FSL. The inability of rimonabant to block the antidepressant effect of S-KET highlights the complexity of its interaction with the ECS, warranting further investigation into the molecular pathways.
Collapse
Affiliation(s)
- Nicole R Silva
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Luana B Domingos
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Adriano M Chaves-Filho
- Division of Medical Sciences, University of Victoria, Canada; Neuropharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Brazil
| | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Brazil
| | - Caroline C Real
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Denmark
| | | | - Pedro H Gobira
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | | | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Denmark
| | - Carolina H Andrade
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Brazil
| | - Heidi K Müller
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Sâmia R L Joca
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark.
| |
Collapse
|
3
|
Weidenauer A, Garani R, Lalang N, Watts J, Lepage M, Rusjan PM, Mizrahi R. The Role of Fatty Acid Amide Hydrolase, a Key Regulatory Endocannabinoid Enzyme, in Domain-Specific Cognitive Performance in Psychosis. Schizophr Bull 2024:sbae212. [PMID: 39729518 DOI: 10.1093/schbul/sbae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive impairments are particularly disabling for patients with a psychotic disorder and often persist despite optimization of antipsychotic treatment. Thus, motivating an extension of the research focus on the endocannabinoid system. The aim of this study was to evaluate group differences in brain fatty acid amid hydrolase (FAAH), an endocannabinoid enzyme between first-episode psychosis (FEP), individuals with clinical high risk (CHR) for psychosis and healthy controls (HCs). Furthermore, to test the hypothesis that FAAH is linked with cognition using positron emission tomography (PET). STUDY DESIGN We analyzed 80 PET scans with the highly selective FAAH radioligand [11C]CURB, including 30 patients with FEP (6 female), 15 CHR (5 female), and 35 HC (19 female). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Berg Card Sorting Test (BCST) were applied to test cognitive performance. STUDY RESULTS There was no difference in FAAH activity between groups (F2, 75 = 0.75, P = .48; Cohen's f = 0.141; small effect). Overall, there was a difference in the association between groups regarding FAAH activity and the domain visuospatial construction (F2, 72 = 4.67, P = .01; Cohen's f = .36; medium effect). Furthermore, across the sample, lower FAAH activity was associated with a higher percentage of perseverative responses (F1, 66 = 5.06, P = .03; Cohen's f = 0.28, medium effect). CONCLUSIONS We report evidence for associations between endocannabinoid alterations in FEP and CHR with specific domains of cognition (visuospatial construction and perseverative response), not overall cognition.
Collapse
Affiliation(s)
- Ana Weidenauer
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna 1090, Austria
| | - Ranjini Garani
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Nittha Lalang
- Vertex Pharmaceuticals, Boston, MA 02210, United States
| | - Jeremy Watts
- Research Centre, CHU Sainte-Justine, Montreal, Quebec H3T 1C5, Canada
- Department of Psychiatry, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Martin Lepage
- Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Pablo M Rusjan
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Romina Mizrahi
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| |
Collapse
|
4
|
Zhao F, Guan W. Defects of parvalbumin-positive interneurons are implicated in psychiatric disorders. Biochem Pharmacol 2024; 230:116599. [PMID: 39481655 DOI: 10.1016/j.bcp.2024.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Psychiatric disorders are a common cause of severe long-term disability and socioeconomic burden worldwide. Although our understanding of these disorders has advanced substantially over the last few years, little has changed the standards of care for these illnesses. Fast-spiking parvalbumin-positive interneurons (PVIs), a subpopulation of gamma-aminobutyric acid (GABA)ergic interneurons, are widely distributed in the hippocampus and have been reported to play an important role in various mental disorders. However, the mechanisms underlying the regulation of the molecular networks relevant to depression and schizophrenia (SCZ) are unknown. Here, we discuss the functions of PVIs in psychiatric disorders, including depression and SCZ. After reviewing several studies, we concluded that dysfunction in PVIs could cause depression-like behavior, as well as cognitive categories in SCZ, which might be mediated in large part by greater synaptic variability. In summary, this scientific review aims to discuss the current knowledge regarding the function of PVIs in depression and SCZ. Moreover, we highlight the importance of neurogenesis and synaptic plasticity in the pathogenesis of depression and SCZ, which seem to be mediated by PVIs activity. These findings provide a better understanding of the role of PVIs in psychiatric disorders.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Pharmacology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin 214400, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
5
|
Di Bartolomeo M, Čerňanová A, Petrušová V, Di Martino S, Hodosy J, Drago F, Micale V, D'Addario C. DNA methylation at cannabinoid type 1 and dopamine D2 receptor genes in saliva samples of psychotic subjects: Is there an effect of Cannabis use? Pharmacol Res 2024; 208:107343. [PMID: 39127265 DOI: 10.1016/j.phrs.2024.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Psychosis is a characterizing feature of many mental disorders that dramatically affects human thoughts and perceptions, influencing the ability to distinguish between what is real and what is not. Both genetic and environmental factors, such as stressful events or drug use, play a pivotal role in the development of symptomatology and therefore changes in the epigenome may be of relevance in modeling a psychotic phenotype. According to the well-documented dysregulation of endocannabinoid and dopaminergic system genes in schizophrenia, we investigated DNA methylation cannabinoid type 1 receptor (CNR1) and dopamine D2 receptor (DRD2) genes in saliva samples from psychotic subjects using pyrosequencing. The epigenetic mark was significantly higher and directly correlated for both genes in psychotic subjects compared to healthy controls. We also showed that these DNA methylation levels were lower in psychotic subjects reporting current delta-9-tetrahydrocannabinol (THC) consumption, a well-known risk factor for developing psychosis throughout the lifespan, resembling those of controls at least for the DRD2 gene. Overall, our data confirm the key role of CNR1 and DRD2 gene regulation in psychosis and suggest DNA methylation levels at specific CpG sites as potential biomarkers, but just in those psychotic subjects not consuming THC.
Collapse
Affiliation(s)
- Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy.
| | - Andrea Čerňanová
- Psychiatric Department SMU, Slovak Medical University and University Hospital Bratislava, Ružinov, Bratislava 82101, Slovakia
| | - Veronika Petrušová
- Psychiatric Department SMU, Slovak Medical University and University Hospital Bratislava, Ružinov, Bratislava 82101, Slovakia
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - Július Hodosy
- Emergency Department, University Hospital Bratislava, Ružinov, Bratislava 82101, Slovakia; Faculty of Medicine, Comenius University in Bratislava, Bratislava 81372, Slovakia
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
6
|
Badaut J, Hippauf L, Malinconi M, Noarbe BP, Obenaus A, Dubois CJ. Endocannabinoid-mediated rescue of somatosensory cortex activity, plasticity and related behaviors following an early in life concussion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577914. [PMID: 38352553 PMCID: PMC10862852 DOI: 10.1101/2024.01.30.577914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Due to the assumed plasticity of immature brain, early in life brain alterations are thought to lead to better recoveries in comparison to the mature brain. Despite clinical needs, how neuronal networks and associated behaviors are affected by early in life brain stresses, such as pediatric concussions, have been overlooked. Here we provide first evidence in mice that a single early in life concussion durably increases neuronal activity in the somatosensory cortex into adulthood, disrupting neuronal integration while the animal is performing sensory-related tasks. This represents a previously unappreciated clinically relevant mechanism for the impairment of sensory-related behavior performance. Furthermore, we demonstrate that pharmacological modulation of the endocannabinoid system a year post-concussion is well-suited to rescue neuronal activity and plasticity, and to normalize sensory-related behavioral performance, addressing the fundamental question of whether a treatment is still possible once post-concussive symptoms have developed, a time-window compatible with clinical treatment.
Collapse
Affiliation(s)
- J Badaut
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - L Hippauf
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - M Malinconi
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - B P Noarbe
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - A Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - C J Dubois
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| |
Collapse
|
7
|
Carlos-Lima E, Higa GSV, Viana FJC, Tamais AM, Cruvinel E, Borges FDS, Francis-Oliveira J, Ulrich H, De Pasquale R. Serotonergic Modulation of the Excitation/Inhibition Balance in the Visual Cortex. Int J Mol Sci 2023; 25:519. [PMID: 38203689 PMCID: PMC10778629 DOI: 10.3390/ijms25010519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Serotonergic neurons constitute one of the main systems of neuromodulators, whose diffuse projections regulate the functions of the cerebral cortex. Serotonin (5-HT) is known to play a crucial role in the differential modulation of cortical activity related to behavioral contexts. Some features of the 5-HT signaling organization suggest its possible participation as a modulator of activity-dependent synaptic changes during the critical period of the primary visual cortex (V1). Cells of the serotonergic system are among the first neurons to differentiate and operate. During postnatal development, ramifications from raphe nuclei become massively distributed in the visual cortical area, remarkably increasing the availability of 5-HT for the regulation of excitatory and inhibitory synaptic activity. A substantial amount of evidence has demonstrated that synaptic plasticity at pyramidal neurons of the superficial layers of V1 critically depends on a fine regulation of the balance between excitation and inhibition (E/I). 5-HT could therefore play an important role in controlling this balance, providing the appropriate excitability conditions that favor synaptic modifications. In order to explore this possibility, the present work used in vitro intracellular electrophysiological recording techniques to study the effects of 5-HT on the E/I balance of V1 layer 2/3 neurons, during the critical period. Serotonergic action on the E/I balance has been analyzed on spontaneous activity, evoked synaptic responses, and long-term depression (LTD). Our results pointed out that the predominant action of 5-HT implies a reduction in the E/I balance. 5-HT promoted LTD at excitatory synapses while blocking it at inhibitory synaptic sites, thus shifting the Hebbian alterations of synaptic strength towards lower levels of E/I balance.
Collapse
Affiliation(s)
- Estevão Carlos-Lima
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
- Departamento de Bioquímica, Instituto de Química (USP), São Paulo 05508-900, SP, Brazil;
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo 09210-580, SP, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Alicia Moraes Tamais
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Fernando da Silva Borges
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, New York, NY 11203, USA;
| | - José Francis-Oliveira
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), São Paulo 05508-900, SP, Brazil;
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| |
Collapse
|
8
|
Bietar B, Tanner S, Lehmann C. Neuroprotection and Beyond: The Central Role of CB1 and CB2 Receptors in Stroke Recovery. Int J Mol Sci 2023; 24:16728. [PMID: 38069049 PMCID: PMC10705908 DOI: 10.3390/ijms242316728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The endocannabinoid system, with its intricate presence in numerous cells, tissues, and organs, offers a compelling avenue for therapeutic interventions. Central to this system are the cannabinoid receptors 1 and 2 (CB1R and CB2R), whose ubiquity can introduce complexities in targeted treatments due to their wide-ranging physiological influence. Injuries to the central nervous system (CNS), including strokes and traumatic brain injuries, induce localized pro-inflammatory immune responses, termed neuroinflammation. Research has shown that compensatory immunodepression usually follows, and these mechanisms might influence immunity, potentially affecting infection risks in patients. As traditional preventive treatments like antibiotics face challenges, the exploration of immunomodulatory therapies offers a promising alternative. This review delves into the potential neuroprotective roles of the cannabinoid receptors: CB1R's involvement in mitigating excitotoxicity and CB2R's dual role in promoting cell survival and anti-inflammatory responses. However, the potential of cannabinoids to reduce neuroinflammation must be weighed against the risk of exacerbating immunodepression. Though the endocannabinoid system promises numerous therapeutic benefits, understanding its multifaceted signaling mechanisms and outcomes remains a challenge.
Collapse
Affiliation(s)
- Bashir Bietar
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Sophie Tanner
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Christian Lehmann
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
9
|
Gambacorta N, Gasperi V, Guzzo T, Di Leva FS, Ciriaco F, Sánchez C, Tullio V, Rozzi D, Marinelli L, Topai A, Nicolotti O, Maccarrone M. Exploring the 1,3-benzoxazine chemotype for cannabinoid receptor 2 as a promising anti-cancer therapeutic. Eur J Med Chem 2023; 259:115647. [PMID: 37478557 DOI: 10.1016/j.ejmech.2023.115647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
The discovery of selective agonists of cannabinoid receptor 2 (CB2) is strongly pursued to successfully tuning endocannabinoid signaling for therapeutic purposes. However, the design of selective CB2 agonists is still challenging because of the high homology with the cannabinoid receptor 1 (CB1) and for the yet unclear molecular basis of the agonist/antagonist switch. Here, the 1,3-benzoxazine scaffold is presented as a versatile chemotype for the design of CB2 agonists from which 25 derivatives were synthesized. Among these, compound 7b5 (CB2 EC50 = 110 nM, CB1 EC50 > 10 μM) demonstrated to impair proliferation of triple negative breast cancer BT549 cells and to attenuate the release of pro-inflammatory cytokines in a CB2-dependent manner. Furthermore, 7b5 abrogated the activation of extracellular signal-regulated kinase (ERK) 1/2, a key pro-inflammatory and oncogenic enzyme. Finally, molecular dynamics studies suggested a new rationale for the in vitro measured selectivity and for the observed agonist behavior.
Collapse
Affiliation(s)
- Nicola Gambacorta
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Tatiana Guzzo
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via Della Ricerca Scientifica Snc, 00133, Rome, Italy
| | | | - Fulvio Ciriaco
- Department of Chemistry, University of the Studies of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, C/ José Antonio Nováis, 12, 28040, Madrid, Spain
| | - Valentina Tullio
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Diego Rozzi
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via Della Ricerca Scientifica Snc, 00133, Rome, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Alessandra Topai
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via Della Ricerca Scientifica Snc, 00133, Rome, Italy.
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy; European Center for Brain Research/Santa Lucia Foundation IRCCS, Via Del Fosso di Fiorano 64, 00143, Rome, Italy.
| |
Collapse
|
10
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2-Metabolome, immunome, synaptome. Front Psychiatry 2023; 14:1182536. [PMID: 37854446 PMCID: PMC10579598 DOI: 10.3389/fpsyt.2023.1182536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
11
|
Scott-Dennis M, Rafani FA, Yi Y, Perera T, Harwood CR, Guba W, Rufer AC, Grether U, Veprintsev DB, Sykes DA. Development of a membrane-based Gi-CASE biosensor assay for profiling compounds at cannabinoid receptors. Front Pharmacol 2023; 14:1158091. [PMID: 37637423 PMCID: PMC10450933 DOI: 10.3389/fphar.2023.1158091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/05/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction: The cannabinoid receptor (CBR) subtypes 1 (CB1R) and 2 (CB2R) are key components of the endocannabinoid system (ECS), playing a central role in the control of peripheral pain, inflammation and the immune response, with further roles in the endocrine regulation of food intake and energy balance. So far, few medicines targeting these receptors have reached the clinic, suggesting that a better understanding of the receptor signalling properties of existing tool compounds and clinical candidates may open the door to the development of more effective and safer treatments. Both CB1R and CB2R are Gαi protein-coupled receptors but detecting Gαi protein signalling activity reliably and reproducibly is challenging. This is due to the inherent variability in live cell-based assays and restrictions around the use of radioactive [35S]-GTPγS, a favoured technology for developing higher-throughput membrane-based Gαi protein activity assays. Methods: Here, we describe the development of a membrane-based Gαi signalling system, produced from membrane preparations of HEK293TR cells, stably overexpressing CB1R or CB2R, and components of the Gαi-CASE biosensor. This BRET-based system allows direct detection of Gαi signalling in both cells and membranes by monitoring bioluminescence resonance energy transfer (BRET) between the α and the βγ subunits. Cells and membranes were subject to increasing concentrations of reference cannabinoid compounds, with 10 μM furimazine added to generate RET signals, which were detected on a PHERAstar FSX plate reader, then processed using MARS software and analysed in GraphPad PRISM 9.2. Results: In membranes expressing the Gi-CASE biosensor, the cannabinoid ligands profiled were found to show agonist and inverse agonist activity. Agonist activity elicited a decrease in the BRET signal, indicative of receptor activation and G protein dissociation. Inverse agonist activity caused an increase in BRET signal, indicative of receptor inactivation, and the accumulation of inactive G protein. Our membrane-based Gi-CASE NanoBRET system successfully characterised the potency (pEC50) and efficacy (Emax) of CBR agonists and inverse agonists in a 384-well screening format. Values obtained were in-line with whole-cell Gi-CASE assays and consistent with literature values obtained in the GTPγS screening format. Discussion: This novel, membrane-based Gαi protein activation assay is applicable to other Gαi-coupled GPCRs, including orphan receptors, allowing real-time higher-throughput measurements of receptor activation.
Collapse
Affiliation(s)
- Morgan Scott-Dennis
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Fikri A. Rafani
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Yicheng Yi
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Themiya Perera
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Clare R. Harwood
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Wolfgang Guba
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Arne C. Rufer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Uwe Grether
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Dmitry B. Veprintsev
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
- Z7 Biotech Limited, London, United Kingdom
| | - David A. Sykes
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
- Z7 Biotech Limited, London, United Kingdom
| |
Collapse
|
12
|
Rodríguez-Manzo G, Canseco-Alba A. The endogenous cannabinoid system modulates male sexual behavior expression. Front Behav Neurosci 2023; 17:1198077. [PMID: 37324524 PMCID: PMC10264596 DOI: 10.3389/fnbeh.2023.1198077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The endocannabinoid system (ECS) plays a key neuromodulatory role in the brain. Main features of endocannabinoids (eCBs) are that they are produced on demand, in response to enhanced neuronal activity, act as retrograde messengers, and participate in the induction of brain plasticity processes. Sexual activity is a motivated behavior and therefore, the mesolimbic dopaminergic system (MSL) plays a central role in the control of its appetitive component (drive to engage in copulation). In turn, copulation activates mesolimbic dopamine neurons and repeated copulation produces the continuous activation of the MSL system. Sustained sexual activity leads to the achievement of sexual satiety, which main outcome is the transient transformation of sexually active male rats into sexually inhibited animals. Thus, 24 h after copulation to satiety, the sexually satiated males exhibit a decreased sexual motivation and do not respond to the presence of a sexually receptive female with sexual activity. Interestingly, blockade of cannabinoid receptor 1 (CB1R) during the copulation to satiety process, interferes with both the appearance of the long-lasting sexual inhibition and the decrease in sexual motivation in the sexually satiated males. This effect is reproduced when blocking CB1R at the ventral tegmental area evidencing the involvement of MSL eCBs in the induction of this sexual inhibitory state. Here we review the available evidence regarding the effects of cannabinoids, including exogenously administered eCBs, on male rodent sexual behavior of both sexually competent animals and rat sub populations spontaneously showing copulatory deficits, considered useful to model some human male sexual dysfunctions. We also include the effects of cannabis preparations on human male sexual activity. Finally, we review the role played by the ECS in the control of male sexual behavior expression with the aid of the sexual satiety phenomenon. Sexual satiety appears as a suitable model for the study of the relationship between eCB signaling, MSL synaptic plasticity and the modulation of male sexual motivation under physiological conditions that might be useful for the understanding of MSL functioning, eCB-mediated plasticity and their relationship with motivational processes.
Collapse
Affiliation(s)
- Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav-Sede Sur), Ciudad de México, Mexico
| | - Ana Canseco-Alba
- Laboratorio de Fisiología de la Formación Reticular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| |
Collapse
|
13
|
Khaspekov LG, Frumkina LE. Molecular Mechanisms of Astrocyte Involvement in Synaptogenesis and Brain Synaptic Plasticity. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:502-514. [PMID: 37080936 DOI: 10.1134/s0006297923040065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Astrocytes perform a wide range of important functions in the brain. As structural and functional components of synapses, astrocytes secrete various factors (proteins, lipids, small molecules, etc.) that bind to neuronal receptor and contribute to synaptogenesis and regulation of synaptic contacts. Astrocytic factors play a key role in the formation of neural networks undergoing short- and long-term synaptic morphological and functional rearrangements essential in the memory formation and behavior. The review summarizes the data on the molecular mechanisms mediating the involvement of astrocyte-secreted factors in synaptogenesis in the brain and provides up-to-date information on the role of astrocytes and astrocytic synaptogenic factors in the long-term plastic rearrangements of synaptic contacts.
Collapse
|
14
|
Busquets-Garcia A, Melis M, Bellocchio L, Marsicano G. Cannabinoid Signalling in the Brain: New Vistas. Eur J Neurosci 2022; 55:903-908. [PMID: 35118747 DOI: 10.1111/ejn.15618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Affiliation(s)
- A Busquets-Garcia
- Cell-type mechanisms in normal and pathological behaviour Research Group, Neuroscience Programme, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - M Melis
- Department of Biomedical Sciences, University of Cagliari. Cagliari, Italy
| | - L Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - G Marsicano
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| |
Collapse
|
15
|
The potential roles of excitatory-inhibitory imbalances and the repressor element-1 silencing transcription factor in aging and aging-associated diseases. Mol Cell Neurosci 2021; 117:103683. [PMID: 34775008 DOI: 10.1016/j.mcn.2021.103683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/28/2022] Open
Abstract
Disruptions to the central excitatory-inhibitory (E/I) balance are thought to be related to aging and underlie a host of neural pathologies, including Alzheimer's disease. Aging may induce an increase in excitatory signaling, causing an E/I imbalance, which has been linked to shorter lifespans in mice, flies, and worms. In humans, extended longevity correlates to greater repression of genes involved in excitatory neurotransmission. The repressor element-1 silencing transcription factor (REST) is a master regulator in neural cells and is believed to be upregulated with senescent stimuli, whereupon it counters hyperexcitability, insulin/insulin-like signaling pathway activity, oxidative stress, and neurodegeneration. This review examines the putative mechanisms that distort the E/I balance with aging and neurodegeneration, and the putative roles of REST in maintaining neuronal homeostasis.
Collapse
|
16
|
A Time-Course Study of the Expression Level of Synaptic Plasticity-Associated Genes in Un-Lesioned Spinal Cord and Brain Areas in a Rat Model of Spinal Cord Injury: A Bioinformatic Approach. Int J Mol Sci 2021; 22:ijms22168606. [PMID: 34445312 PMCID: PMC8395345 DOI: 10.3390/ijms22168606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
"Neuroplasticity" is often evoked to explain adaptation and compensation after acute lesions of the Central Nervous System (CNS). In this study, we investigated the modification of 80 genes involved in synaptic plasticity at different times (24 h, 8 and 45 days) from the traumatic spinal cord injury (SCI), adopting a bioinformatic analysis. mRNA expression levels were analyzed in the motor cortex, basal ganglia, cerebellum and in the spinal segments rostral and caudal to the lesion. The main results are: (i) a different gene expression regulation is observed in the Spinal Cord (SC) segments rostral and caudal to the lesion; (ii) long lasting changes in the SC includes the extracellular matrix (ECM) enzymes Timp1, transcription regulators (Egr, Nr4a1), second messenger associated proteins (Gna1, Ywhaq); (iii) long-lasting changes in the Motor Cortex includes transcription regulators (Cebpd), neurotransmitters/neuromodulators and receptors (Cnr1, Gria1, Nos1), growth factors and related receptors (Igf1, Ntf3, Ntrk2), second messenger associated proteins (Mapk1); long lasting changes in Basal Ganglia and Cerebellum include ECM protein (Reln), growth factors (Ngf, Bdnf), transcription regulators (Egr, Cebpd), neurotransmitter receptors (Grin2c). These data suggest the molecular mapping as a useful tool to investigate the brain and SC reorganization after SCI.
Collapse
|