1
|
Wang J, Liu Z, Hu J, Tong S, Sun J, Hong X. Test-retest reliability of pre-cue and anticipatory alpha activity in visual spatial attention. Neuroscience 2025; 575:85-93. [PMID: 40221016 DOI: 10.1016/j.neuroscience.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Alpha-band activity over the parietal-occipital cortex is a canonical neural marker of visual spatial attention. However, the ongoing debate surrounds whether this activity represents as an active mechanism in gating visual information processing or if it merely reflects an epiphenomenal consequence of anticipatory attentional shifts. Despite this debate, the temporal stability of alpha activity in visual spatial attention, an essential aspect for this discussion, remains ambiguous. Notably, our recent findings highlighted the significant impact of pre-cue alpha power on anticipatory alpha activity in spatial attention tasks, yet the reliability of these pre-cue alpha effects remained unexplored. Here we evaluated the short-term test-retest reliability of both pre-cue and anticipatory alpha activity in healthy young adults who engaged in the same spatial cueing paradigm over two consecutive days. Reliability was gauged using the intraclass coefficient (ICC). Our results demonstrated excellent reliability of pre-cue alpha power, alpha event-related desynchronization (ERD) and individual alpha frequency (IAF), and moderate reliability of alpha lateralization index (LI). Additionally, by categorizing participants into higher and lower pre-cue alpha power sub-groups based on median-splitting, we observed no significant differences in ICCs between the two sub-groups for anticipatory alpha ERD, LI and IAF, except for a significantly higher ICC of pre-cue alpha power in the higher sub-group than the lower sub-group. Taken together, by examining the short-term reliability of alpha-band activity in visual spatial attention for the first time, our study lays a foundational step for the ongoing discourse regarding its functional implications in visual spatial attention.
Collapse
Affiliation(s)
- Jingyi Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ziqiu Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyi Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiangfei Hong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Ferrazzano G, Maccarrone D, Guerra A, Collura A, Satriano F, Fratino M, Ievolella F, Belvisi D, Amato MP, Centonze D, Altieri M, Conte A, Leodori G. The effects of gamma-tACS on cognitive impairment in multiple sclerosis: A randomized, double-blind, sham-controlled, pilot study. Mult Scler 2025:13524585251333575. [PMID: 40285586 DOI: 10.1177/13524585251333575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
BACKGROUND Multiple sclerosis (MS) often causes impairment in working memory (WM), information processing speed (IPS), and verbal memory (VM). These deficits are linked to disrupted neural oscillatory activity. Transcranial alternating current stimulation (tACS), which modulates cortical oscillations, may hold promise for treating cognitive impairment in MS. OBJECTIVES To evaluate online and offline effects of gamma (γ)-tACS on WM, IPS, and VM while assessing changes in brain rhythms using electroencephalography (EEG). METHODS Thirty-six MS patients with single-domain impairment in WM (12), IPS (13), or VM (11) underwent γ-tACS and sham-tACS over the left dorsolateral prefrontal cortex (DLPFC) (WM, IPS) or precuneus (VM). Cognitive performance was assessed pre-tACS (T0), during (T1), and post-tACS (T2) using the Digit Span Backward (DSBW) for WM, Symbol Digit Modalities Test (SDMT) for IPS, and Rey Auditory Verbal Learning Test (RAVLT) for VM. EEG was recorded at T0 and T2 to analyze local power spectral density and local-to-global connectivity. RESULTS DSBW, SDMT, and RAVLT scores transiently improved during γ-tACS and not during sham. IPS-impaired patients showed a reduction in spectral power across all frequency bands, at the stimulation site, post-DLPFC γ-tACS. CONCLUSION γ-tACS briefly improves WM, IPS, and VM in MS patients, warranting further trials of this non-invasive intervention.
Collapse
Affiliation(s)
- Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Davide Maccarrone
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Guerra
- Padova Neuroscience Center, University of Padua, Padua, Italy
- Parkinson and Movement Disorders Unit, Study Center on Neurodegeneration, Department of Neuroscience, University of Padua, Padua, Italy
| | - Angelo Collura
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Federica Satriano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Mariangela Fratino
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Ievolella
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Maria Pia Amato
- Department Neurofarba, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Diego Centonze
- IRCCS Neuromed, Pozzilli, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Marta Altieri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
3
|
Morales Fajardo K, Yan X, Lungoci G, Casado Sánchez M, Mitsis GD, Boudrias MH. The Modulatory Effects of Transcranial Alternating Current Stimulation on Brain Oscillatory Patterns in the Beta Band in Healthy Older Adults. Brain Sci 2024; 14:1284. [PMID: 39766483 PMCID: PMC11675015 DOI: 10.3390/brainsci14121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Background: In the last few years, transcranial alternating current stimulation (tACS) has attracted attention as a promising approach to interact with ongoing oscillatory cortical activity and, consequently, to enhance cognitive and motor processes. While tACS findings are limited by high variability in young adults' responses, its effects on brain oscillations in older adults remain largely unexplored. In fact, the modulatory effects of tACS on cortical oscillations in healthy aging participants have not yet been investigated extensively, particularly during movement. This study aimed to examine the after-effects of 20 Hz and 70 Hz High-Definition tACS on beta oscillations both during rest and movement. Methods: We recorded resting state EEG signals and during a handgrip task in 15 healthy older participants. We applied 10 min of 20 Hz HD-tACS, 70 Hz HD-tACS or Sham stimulation for 10 min. We extracted resting-state beta power and movement-related beta desynchronization (MRBD) values to compare between stimulation frequencies and across time. Results: We found that 20 Hz HD-tACS induced a significant reduction in beta power for electrodes C3 and CP3, while 70 Hz did not have any significant effects. With regards to MRBD, 20 Hz HD-tACS led to more negative values, while 70 Hz HD-tACS resulted in more positive ones for electrodes C3 and FC3. Conclusions: These findings suggest that HD-tACS can modulate beta brain oscillations with frequency specificity. They also highlight the focal impact of HD-tACS, which elicits effects on the cortical region situated directly beneath the stimulation electrode.
Collapse
Affiliation(s)
- Kenya Morales Fajardo
- School of Physical and Occupational Therapy, McGill University, Montréal, QC H3G 1Y5, Canada;
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
| | - Xuanteng Yan
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
- Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada;
| | - George Lungoci
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
- Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 1A1, Canada
| | - Monserrat Casado Sánchez
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
- Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 1A1, Canada
| | - Georgios D. Mitsis
- Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada;
| | - Marie-Hélène Boudrias
- School of Physical and Occupational Therapy, McGill University, Montréal, QC H3G 1Y5, Canada;
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
| |
Collapse
|
4
|
Trajkovic J, Sack AT, Romei V. EEG-based biomarkers predict individual differences in TMS-induced entrainment of intrinsic brain rhythms. Brain Stimul 2024; 17:224-232. [PMID: 38428585 DOI: 10.1016/j.brs.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Entrainment (increase) and modulation (shift) of intrinsic brain oscillations via rhythmic-TMS (rh-TMS) enables to either increase the amplitude of the individual peak oscillatory frequency, or experimentally slowing/accelerating this intrinsic peak oscillatory frequency by slightly shifting it. Both entrainment, and modulation of brain oscillations can lead to different measurable perceptual and cognitive changes. However, there are noticeable between-participant differences in such experimental entrainment outcomes. OBJECTIVE/HYPOTHESIS The current study aimed at explaining these inter-individual differences in entrainment/frequency shift success. Here we hypothesize that the width and the height of the Arnold tongue, i.e., the frequency offsets that can still lead to oscillatory change, can be individually modelled via resting-state neural markers, and may explain and predict efficacy and limitation of successful rhythmic-TMS (rh-TMS) manipulation. METHODS Spectral decomposition of resting-state data was used to extract the spectral curve of alpha activity, serving as a proxy of an individual Arnold tongue. These parameters were then used as predictors of the rh-TMS outcome, when increasing alpha-amplitude (i.e., applying pulse train tuned to the individual alpha frequency, IAF), or modulating the alpha-frequency (i.e., making alpha faster or slower by stimulating at IAF±1Hz frequencies). RESULTS Our results showed that the height of the at-rest alpha curve predicted how well the entrainment increased the intrinsic oscillatory peak frequency, with a higher at-rest spectral curve negatively predicting amplitude-enhancement during entrainment selectively during IAF-stimulation. In contrast, the wider the resting-state alpha curve, the higher the modulation effects aiming to shift the intrinsic frequency towards faster or slower rhythms. CONCLUSION These results not only offer a theoretical and experimental model for explaining the variance across different rh-TMS studies reporting heterogenous rh-TMS outcomes, but also introduce a potential biomarker and corresponding evaluative tool to develop most optimal and personalized rh-TMS protocols, both in research and clinical applications.
Collapse
Affiliation(s)
- Jelena Trajkovic
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, the Netherlands; Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena, 47521, Italy.
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, the Netherlands
| | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena, 47521, Italy; Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, Madrid, 28015, Spain.
| |
Collapse
|
5
|
Akaiwa M, Matsuda Y, Kurokawa R, Sugawara Y, Kosuge R, Saito H, Shibata E, Sasaki T, Sugawara K, Kozuka N. Does 20 Hz Transcranial Alternating Current Stimulation over the Human Primary Motor Cortex Modulate Beta Rebound Following Voluntary Movement? Brain Sci 2024; 14:74. [PMID: 38248289 PMCID: PMC10813667 DOI: 10.3390/brainsci14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Beta frequency oscillations originating from the primary motor cortex increase in amplitude following the initiation of voluntary movement, a process termed beta rebound. The strength of beta rebound has been reported to predict the recovery of motor function following stroke, suggesting therapeutic applications of beta rebound modulation. The present study examined the effect of 20 Hz transcranial alternating current stimulation (tACS) on the beta rebound induced by self-paced voluntary movement. Electroencephalograms (EEGs) and electromyograms (EMGs) were recorded from 16 healthy adults during voluntary movements performed before and after active or sham tACS. There was no significant change in average beta rebound after active tACS. However, the beta rebound amplitude was significantly enhanced in a subset of participants, and the magnitude of the increase across all participants was negatively correlated with the difference between individual peak beta frequency and tACS frequency. Thus, matching the stimulus frequency of tACS with individual beta frequency may facilitate therapeutic enhancement for motor rehabilitation.
Collapse
Affiliation(s)
- Mayu Akaiwa
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yuya Matsuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Ryo Kurokawa
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yasushi Sugawara
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Rin Kosuge
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hidekazu Saito
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Eriko Shibata
- Major of Physical Therapy, Department of Rehabilitation, Faculty of Healthcare and Science, Hokkaido Bunkyo University, Eniwa 061-1449, Japan;
| | - Takeshi Sasaki
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| | - Kazuhiro Sugawara
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| | - Naoki Kozuka
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| |
Collapse
|
6
|
Michael E, Covarrubias LS, Leong V, Kourtzi Z. Learning at your brain's rhythm: individualized entrainment boosts learning for perceptual decisions. Cereb Cortex 2023; 33:5382-5394. [PMID: 36352510 PMCID: PMC10152088 DOI: 10.1093/cercor/bhac426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
Training is known to improve our ability to make decisions when interacting in complex environments. However, individuals vary in their ability to learn new tasks and acquire new skills in different settings. Here, we test whether this variability in learning ability relates to individual brain oscillatory states. We use a visual flicker paradigm to entrain individuals at their own brain rhythm (i.e. peak alpha frequency) as measured by resting-state electroencephalography (EEG). We demonstrate that this individual frequency-matched brain entrainment results in faster learning in a visual identification task (i.e. detecting targets embedded in background clutter) compared to entrainment that does not match an individual's alpha frequency. Further, we show that learning is specific to the phase relationship between the entraining flicker and the visual target stimulus. EEG during entrainment showed that individualized alpha entrainment boosts alpha power, induces phase alignment in the pre-stimulus period, and results in shorter latency of early visual evoked potentials, suggesting that brain entrainment facilitates early visual processing to support improved perceptual decisions. These findings suggest that individualized brain entrainment may boost perceptual learning by altering gain control mechanisms in the visual cortex, indicating a key role for individual neural oscillatory states in learning and brain plasticity.
Collapse
Affiliation(s)
- Elizabeth Michael
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
| | | | - Victoria Leong
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
- Psychology, School of Social Sciences, Nanyang Technological University (NTU), Singapore 6398818, Singapore
- Lee Kong Chian School of Medicine, NTU, Singapore 308232, Singapore
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
7
|
Halpin SJ, Casson AJ, Tang NKY, Jones AKP, O'Connor RJ, Sivan M. A feasibility study of pre-sleep audio and visual alpha brain entrainment for people with chronic pain and sleep disturbance. FRONTIERS IN PAIN RESEARCH 2023; 4:1096084. [PMID: 36910250 PMCID: PMC9996154 DOI: 10.3389/fpain.2023.1096084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Chronic pain and sleep disturbance are bi-directionally related. Cortical electrical activity in the alpha frequency band can be enhanced with sensory stimulation via the phenomenon of entrainment, and may reduce pain perception. A smartphone based programme which delivers 10 Hz stimulation through flickering light or binaural beats was developed for use at night, pre-sleep, with the aim of improving night time pain and sleep and thereby subsequent pain and related daytime symptoms. The aim of this study was to assess the feasibility and give an indication of effect of this programme for individuals with chronic pain and sleep disturbance. Materials and methods In a non-controlled feasibility study participants used audio or visual alpha entrainment for 30 min pre-sleep each night for 4 weeks, following a 1 week baseline period. The study was pre-registered at ClinicalTrials.gov with the ID NCT04176861. Results 28 participants (79% female, mean age 45 years) completed the study with high levels of data completeness (86%) and intervention adherence (92%). Daily sleep diaries showed an increase compared to baseline in total sleep time of 29 min (p = 0.0033), reduction in sleep onset latency of 13 min (p = 0.0043), and increase in sleep efficiency of 4.7% (p = 0.0009). Daily 0-10 numerical rating scale of average pain at night improved by 0.5 points compared to baseline (p = 0.027). Standardised questionnaires showed significant within-participant improvements in sleep quality (change in median Global PSQI from 16 to 12.5), pain interference (change in median BPI Pain Interference from 7.5 to 6.8), fatigue (change in median MFI total score from 82.5 to 77), and depression and anxiety (change in median HADS depression score from 12 to 10.5 and anxiety from 13.5 to 11). Discussion Pre-sleep use of a smartphone programme for alpha entrainment by audio or visual stimulation was feasible for individuals with chronic pain and sleep disturbance. The effect on symptoms requires further exploration in controlled studies.
Collapse
Affiliation(s)
- Stephen J Halpin
- Academic Department of Rehabilitation Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Human Pain Research Group, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Alexander J Casson
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, United Kingdom
| | - Nicole K Y Tang
- Department of Psychology, University of Warwick, Warwick, United Kingdom
| | - Anthony K P Jones
- Human Pain Research Group, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Rory J O'Connor
- Academic Department of Rehabilitation Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Manoj Sivan
- Academic Department of Rehabilitation Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Human Pain Research Group, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Keitel C, Ruzzoli M, Dugué L, Busch NA, Benwell CSY. Rhythms in cognition: The evidence revisited. Eur J Neurosci 2022; 55:2991-3009. [PMID: 35696729 PMCID: PMC9544967 DOI: 10.1111/ejn.15740] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022]
Affiliation(s)
| | - Manuela Ruzzoli
- Basque Center on Cognition, Brain and Language (BCBL), Donostia/San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Laura Dugué
- Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| | - Niko A Busch
- Institute for Psychology, University of Münster, Münster, Germany
| | | |
Collapse
|
9
|
Janssens SEW, Oever ST, Sack AT, de Graaf TA. "Broadband Alpha Transcranial Alternating Current Stimulation": Exploring a new biologically calibrated brain stimulation protocol. Neuroimage 2022; 253:119109. [PMID: 35306159 DOI: 10.1016/j.neuroimage.2022.119109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) can be used to study causal contributions of oscillatory brain mechanisms to cognition and behavior. For instance, individual alpha frequency (IAF) tACS was reported to enhance alpha power and impact visuospatial attention performance. Unfortunately, such results have been inconsistent and difficult to replicate. In tACS, stimulation generally involves one frequency, sometimes individually calibrated to a peak value observed in an M/EEG power spectrum. Yet, the 'peak' actually observed in such power spectra often contains a broader range of frequencies, raising the question whether a biologically calibrated tACS protocol containing this fuller range of alpha-band frequencies might be more effective. Here, we introduce 'Broadband-alpha-tACS', a complex individually calibrated electrical stimulation protocol. We band-pass filtered left posterior resting-state EEG data around the IAF (± 2 Hz), and converted that time series into an electrical waveform for tACS stimulation of that same left posterior parietal cortex location. In other words, we stimulated a brain region with a 'replay' of its own alpha-band frequency content, based on spontaneous activity. Within-subjects (N = 24), we compared to a sham tACS session the effects of broadband-alpha tACS, power-matched spectral inverse ('alpha-removed') control tACS, and individual alpha frequency (IAF) tACS, on EEG alpha power and performance in an endogenous attention task previously reported to be affected by alpha tACS. Broadband-alpha-tACS significantly modulated attention task performance (i.e., reduced the rightward visuospatial attention bias in trials without distractors, and reduced attention benefits). Alpha-removed tACS also reduced the rightward visuospatial attention bias. IAF-tACS did not significantly modulate attention task performance compared to sham tACS, but also did not statistically significantly differ from broadband-alpha-tACS. This new broadband-alpha-tACS approach seems promising, but should be further explored and validated in future studies.
Collapse
Affiliation(s)
- Shanice E W Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands.
| | - Sanne Ten Oever
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands; Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| | - Tom A de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands; Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
10
|
Janssens SEW, Sack AT. Spontaneous Fluctuations in Oscillatory Brain State Cause Differences in Transcranial Magnetic Stimulation Effects Within and Between Individuals. Front Hum Neurosci 2021; 15:802244. [PMID: 34924982 PMCID: PMC8674306 DOI: 10.3389/fnhum.2021.802244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) can cause measurable effects on neural activity and behavioral performance in healthy volunteers. In addition, TMS is increasingly used in clinical practice for treating various neuropsychiatric disorders. Unfortunately, TMS-induced effects show large intra- and inter-subject variability, hindering its reliability, and efficacy. One possible source of this variability may be the spontaneous fluctuations of neuronal oscillations. We present recent studies using multimodal TMS including TMS-EMG (electromyography), TMS-tACS (transcranial alternating current stimulation), and concurrent TMS-EEG-fMRI (electroencephalography, functional magnetic resonance imaging), to evaluate how individual oscillatory brain state affects TMS signal propagation within targeted networks. We demonstrate how the spontaneous oscillatory state at the time of TMS influences both immediate and longer-lasting TMS effects. These findings indicate that at least part of the variability in TMS efficacy may be attributable to the current practice of ignoring (spontaneous) oscillatory fluctuations during TMS. Ignoring this state-dependent spread of activity may cause great individual variability which so far is poorly understood and has proven impossible to control. We therefore also compare two technical solutions to directly account for oscillatory state during TMS, namely, to use (a) tACS to externally control these oscillatory states and then apply TMS at the optimal (controlled) brain state, or (b) oscillatory state-triggered TMS (closed-loop TMS). The described multimodal TMS approaches are paramount for establishing more robust TMS effects, and to allow enhanced control over the individual outcome of TMS interventions aimed at modulating information flow in the brain to achieve desirable changes in cognition, mood, and behavior.
Collapse
Affiliation(s)
- Shanice E. W. Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain + Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
- Centre for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| |
Collapse
|