1
|
Lai NM, Fiander M, Cracknell J, Tan K, Romantsik O. Dexmedetomidine for analgesia and sedation for procedural pain or discomfort in newborn infants. Cochrane Database Syst Rev 2025; 1:CD014212. [PMID: 39873291 PMCID: PMC11773635 DOI: 10.1002/14651858.cd014212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
OBJECTIVES This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the benefits and harms of dexmedetomidine compared with opioids, non-opioids and placebo in providing sedation and analgesia for procedural pain in newborn infants.
Collapse
Affiliation(s)
- Nai Ming Lai
- School of Medicine, Taylor's University, Subang Jaya, Malaysia
| | - Michelle Fiander
- Cochrane Neonatal, Vermont Oxford Network, Burlington, Vermont, USA
| | | | - Kenneth Tan
- Department of Paediatrics, Monash University, Melbourne, Australia
| | - Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
2
|
Ebrahimi M, Dabbagh A, Madadi F. Propofol-induced hippocampal Neurotoxicity: A mitochondrial perspective. Brain Res 2024; 1831:148841. [PMID: 38428475 DOI: 10.1016/j.brainres.2024.148841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Propofol is a frequently used anesthetic. It can induce neurodegeneration and inhibit neurogenesis in the hippocampus. This effect may be temporary. It can, however, become permanent in vulnerable populations, such as the elderly, who are more susceptible to Alzheimer's disease, and neonates and children, whose brains are still developing and require neurogenesis. Current clinical practice strategies have failed to provide an effective solution to this problem. In addition, the molecular mechanism of this toxicity is not fully understood. Recent advances in molecular research have revealed that apoptosis, in close association with mitochondria, is a crucial mechanism through which propofol contributes to hippocampal toxicity. Preventing the toxicity of propofol on the hippocampus has shown promise in in-vivo, in-vitro, and to a lesser extent human studies. This study seeks to provide a comprehensive literature review of the effects of propofol toxicity on the hippocampus via mitochondria and to suggest translational suggestions based on these molecular results.
Collapse
Affiliation(s)
- Moein Ebrahimi
- Department of Anesthesiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Dabbagh
- Department of Anesthesiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Firoozeh Madadi
- Department of Anesthesiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Guan X, Pavani KC, Chunduru J, Broeckx BJG, Van Soom A, Peelman L. Hsa-miR-665 Is a Promising Biomarker in Cancer Prognosis. Cancers (Basel) 2023; 15:4915. [PMID: 37894282 PMCID: PMC10605552 DOI: 10.3390/cancers15204915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Biomarkers are biomolecules used to identify or predict the presence of a specific disease or condition. They play an important role in early diagnosis and may be crucial for treatment. MicroRNAs (miRNAs), a group of small non-coding RNAs, are more and more regarded as promising biomarkers for several reasons. Dysregulation of miRNAs has been linked with development of several diseases, including many different types of cancer, and abnormal levels can be present in early stages of tumor development. Because miRNAs are stable molecules secreted and freely circulating in blood and urine, they can be sampled with little or no invasion. Here, we present an overview of the current literature, focusing on the types of cancers for which dysregulation of miR-665 has been associated with disease progression, recurrence, and/or prognosis. It needs to be emphasized that the role of miR-665 sometimes seems ambiguous, in the sense that it can be upregulated in one cancer type and downregulated in another and can even change during the progression of the same cancer. Caution is thus needed before using miR-665 as a biomarker, and extrapolation between different cancer types is not advisable. Moreover, more detailed understanding of the different roles of miR-665 will help in determining its potential as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Xuefeng Guan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.C.P.); (A.V.S.)
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Jayendra Chunduru
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Bart J. G. Broeckx
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.C.P.); (A.V.S.)
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| |
Collapse
|
4
|
The Crosstalk between the Blood–Brain Barrier Dysfunction and Neuroinflammation after General Anaesthesia. Curr Issues Mol Biol 2022; 44:5700-5717. [PMID: 36421670 PMCID: PMC9689502 DOI: 10.3390/cimb44110386] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As we know, with continuous medical progress, the treatment of many diseases can be conducted via surgery, which often relies on general anaesthesia for its satisfactory performance. With the widespread use of general anaesthetics, people are beginning to question the safety of general anaesthesia and there is a growing interest in central nervous system (CNS) complications associated with anaesthetics. Recently, abundant evidence has suggested that both blood–brain barrier (BBB) dysfunction and neuroinflammation play roles in the development of CNS complications after anaesthesia. Whether there is a crosstalk between BBB dysfunction and neuroinflammation after general anaesthesia, and whether this possible crosstalk could be a therapeutic target for CNS complications after general anaesthesia needs to be clarified by further studies.
Collapse
|