1
|
Bai M, Xiong Z, Zhang Y, Wang Z, Zeng X. Associations between quantitative susceptibility mapping with male obstructive sleep apnea clinical and imaging markers. Sleep Med 2024; 124:154-161. [PMID: 39303362 DOI: 10.1016/j.sleep.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE To quantitatively measure and compare whole-brain iron deposition between OSA patients and a healthy control group, we initially utilized QSM and evaluated its correlation with PSG results and cognitive function. MATERIALS AND METHODS A total of 28 OSA patients and 22 healthy control subjects matched in age, education level, and BMI were enrolled in our study. Each participant underwent scanning with 3D T1 and multi-echo GRE sequences. Additionally, PSG results were collected from OSA patients, and they underwent simple cognitive assessments. Finally, we analyzed the relationship between iron content in different brain regions, PSG results, and cognitive ability. RESULTS In OSA patients, iron content increased in the left temporal-pole-sup and right putamen, while it decreased in the left fusiform gyrus, left middle temporal gyrus, right inferior occipital gyrus, and right superior temporal gyrus. The correlation analysis between brain iron content and PSG results/cognitive scales is as follows: left fusiform gyrus and MMSE (r = -0.416, p = 0.028); right superior temporal gyrus and MMSE (r = 0.422, p = 0.025); left middle temporal gyrus and average oxygen saturation (r = -0.418, p = 0.027); left temporal-pole-sup and REM stage (rs = 0.466, p = 0.012); the right putamen and N1 stage (rs = 0.393. p = 0.039). Moreover, both MoCA (r = 0.598, p = 0.001) and MMSE (r = 0.456, p = 0.015) show a positive correlation with average oxygen saturation. CONCLUSION This study is the first to use QSM technology to show abnormal brain iron levels in OSA. Correlations between brain iron content, PSG, and cognition in OSA may reveal neuropathological mechanisms, aiding OSA diagnosis.
Collapse
Affiliation(s)
- Mingxian Bai
- GuiZhou University Medical College, Guiyang, China; Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhenliang Xiong
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China; College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Yan Zhang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China; College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Zhongxin Wang
- Department of Pulmonary and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xianchun Zeng
- GuiZhou University Medical College, Guiyang, China; Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
2
|
Zhang Y, Bai M, Xiong Z, Zhang Q, Wang L, Zeng X. Iron Deposition and Functional Connectivity Differences in Females With Migraine Without Aura: A Comparative Study of Headache Sides. Brain Behav 2024; 14:e70096. [PMID: 39435668 PMCID: PMC11494401 DOI: 10.1002/brb3.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/22/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND The pathophysiological mechanisms underlying migraine without aura (MwoA) in females remain incompletely elucidated. Currently, the association between headache laterality and iron deposition (ID), and functional connectivity (FC) in female MwoA patients has not been fully studied. METHODS We prospectively recruited 63 female patients with MwoA and 31 matched healthy controls (HC) from the hospital. ID and FC among the four groups were analyzed using two-sample t-tests (with cluster-wise family-wise error [FWE] correction). Pearson correlation analysis was used to evaluate the relationships between clinical variables and both ID and FC values. Significance level: p < 0.05. RESULTS Compared to HC, left-sided MwoA exhibited differences in ID in various brain regions, including the cerebellum, left orbital inferior frontal gyrus, left calcarine gyrus, right putamen, and left caudate nucleus, as well as exhibited enhanced FC between the left lobule III of the cerebellum and the right superior temporal gyrus. Compared to bilateral MwoA, left-sided MwoA showed significantly enhanced in FC values in the left calcarine gyrus, the right precentral gyrus, the right postcentral gyrus, and the right lingual gyrus. Additionally, significant differences were observed in the Pearson correlations between clinical variables and both ID and FC in the female MwoA subgroups. CONCLUSION Our study provided preliminary evidence indicating significant differences in ID, FC, and correlations among subgroups of female MwoA. This provides neuroimaging references for further subclassifying MwoA patients. This offers valuable insights into potential pathophysiological mechanisms linked to the brain functional impairment in female MwoA.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou ProvinceState Key Laboratory of Public Big Data, College of Computer Science and TechnologyGuizhou UniversityGuiyangGuizhouChina
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and TreatmentGuizhou Provincial People's HospitalGuiyangGuizhouChina
| | - Mingxian Bai
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and TreatmentGuizhou Provincial People's HospitalGuiyangGuizhouChina
- Guizhou University Medical CollegeGuiyangGuizhouChina
| | - Zhenliang Xiong
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou ProvinceState Key Laboratory of Public Big Data, College of Computer Science and TechnologyGuizhou UniversityGuiyangGuizhouChina
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and TreatmentGuizhou Provincial People's HospitalGuiyangGuizhouChina
| | - Qin Zhang
- First School of Clinical MedicineZunyi Medical UniversityZunyiGuizhouChina
| | - Lihui Wang
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou ProvinceState Key Laboratory of Public Big Data, College of Computer Science and TechnologyGuizhou UniversityGuiyangGuizhouChina
| | - Xianchun Zeng
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and TreatmentGuizhou Provincial People's HospitalGuiyangGuizhouChina
| |
Collapse
|
3
|
Wolters AF, Heijmans M, Priovoulos N, Jacobs HIL, Postma AA, Temel Y, Kuijf ML, Michielse S. Neuromelanin related ultra-high field signal intensity of the locus coeruleus differs between Parkinson's disease and controls. Neuroimage Clin 2023; 39:103479. [PMID: 37494758 PMCID: PMC10394012 DOI: 10.1016/j.nicl.2023.103479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Neuromelanin related signal changes in catecholaminergic nuclei are considered as a promising MRI biomarker in Parkinson's disease (PD). Until now, most studies have investigated the substantia nigra (SN), while signal changes might be more prominent in the locus coeruleus (LC). Ultra-high field MRI improves the visualisation of these small brainstem regions and might support the development of imaging biomarkers in PD. OBJECTIVES To compare signal intensity of the SN and LC on Magnetization Transfer MRI between PD patients and healthy controls (HC) and to explore its association with cognitive performance in PD. METHODS This study was conducted using data from the TRACK-PD study, a longitudinal 7T MRI study. A total of 78 early-stage PD patients and 36 HC were included. A mask for the SN and LC was automatically segmented and manually corrected. Neuromelanin related signal intensity of the SN and LC was compared between PD and HC. RESULTS PD participants showed a lower contrast-to-noise ratio (CNR) in the right SN (p = 0.029) and left LC (p = 0.027). After adding age as a confounder, the CNR of the right SN did not significantly differ anymore between PD and HC (p = 0.055). Additionally, a significant positive correlation was found between the SN CNR and memory function. DISCUSSION This study confirms that neuromelanin related signal intensity of the LC differs between early-stage PD patients and HC. No significant difference was found in the SN. This supports the theory of bottom-up disease progression in PD. Furthermore, loss of SN integrity might influence working memory or learning capabilities in PD patients.
Collapse
Affiliation(s)
- Amée F Wolters
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Margot Heijmans
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Nikos Priovoulos
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Alida A Postma
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, The Netherlands
| | - Yasin Temel
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark L Kuijf
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Stijn Michielse
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Wen J, Guo T, Wu J, Bai X, Zhou C, Wu H, Liu X, Chen J, Cao Z, Gu L, Pu J, Zhang B, Zhang M, Guan X, Xu X. Nigral Iron Deposition Influences Disease Severity by Modulating the Effect of Parkinson's Disease on Brain Networks. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2479-2492. [PMID: 36336939 PMCID: PMC9837680 DOI: 10.3233/jpd-223372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND In Parkinson's disease (PD), excessive iron deposition in the substantia nigra may exacerbate α-synuclein aggregation, facilitating the degeneration of dopaminergic neurons and their neural projection. OBJECTIVE To investigate the interaction effect between nigral iron deposition and PD status on brain networks. METHODS Eighty-five PD patients and 140 normal controls (NC) were included. Network function and nigral iron were measured using multi-modality magnetic resonance imaging. According to the median of nigral magnetic susceptibility of NC (0.095 ppm), PD and NC were respectively divided into high and low nigral iron group. The main and interaction effects were investigated by mixed effect analysis. RESULTS The main effect of disease was observed in basal ganglia network (BGN) and visual network (VN). The interaction effect between nigral iron and PD status was observed in left inferior frontal gyrus and left insular lobe in BGN, as well as right middle occipital gyrus, right superior temporal gyrus, and bilateral cuneus in VN. Furthermore, multiple mediation analysis revealed that the functional connectivity of interaction effect clusters in BGN and medial VN partially mediated the relationship between nigral iron and Unified Parkinson's Disease Rating Scale II score. CONCLUSION Our study demonstrates an interaction of nigral iron deposition and PD status on brain networks, that is, nigral iron deposition is associated with the change of brain network configuration exclusively when in PD. We identified a potential causal mediation pathway for iron to affect disease severity that was mediated by both BGN dysfunction and VN hyperfunction in PD.
Collapse
Affiliation(s)
- Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueqin Bai
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengye Cao
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyan Gu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Correspondence to: Xiaojun Xu, MD, Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China. Tel.: +86 0571 87315255; Fax: +86 0571 87315255; E-mail: and Xiaojun Guan, PhD, Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China. Tel.: +86 0571 87315255; Fax: +86 0571 87315255;
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Correspondence to: Xiaojun Xu, MD, Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China. Tel.: +86 0571 87315255; Fax: +86 0571 87315255; E-mail: and Xiaojun Guan, PhD, Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China. Tel.: +86 0571 87315255; Fax: +86 0571 87315255;
| |
Collapse
|
5
|
Ni MH, Li ZY, Sun Q, Yu Y, Yang Y, Hu B, Ma T, Xie H, Li SN, Tao LQ, Yuan DX, Zhu JL, Yan LF, Cui GB. Neurovascular decoupling measured with quantitative susceptibility mapping is associated with cognitive decline in patients with type 2 diabetes. Cereb Cortex 2022; 33:5336-5346. [PMID: 36310091 DOI: 10.1093/cercor/bhac422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 01/10/2023] Open
Abstract
Abstract
Disturbance of neurovascular coupling (NVC) is suggested to be one potential mechanism in type 2 diabetes mellitus (T2DM) associated mild cognitive impairment (MCI). However, NVC evidence derived from functional magnetic resonance imaging ignores the relationship of neuronal activity with vascular injury. Twenty-seven T2DM patients without MCI and thirty healthy controls were prospectively enrolled. Brain regions with changed susceptibility detected by quantitative susceptibility mapping (QSM) were used as seeds for functional connectivity (FC) analysis. NVC coefficients were estimated using combined degree centrality (DC) with susceptibility or cerebral blood flow (CBF). Partial correlations between neuroimaging indicators and cognitive decline were investigated. In T2DM group, higher susceptibility values in right hippocampal gyrus (R.PHG) were found and were negatively correlated with Naming Ability of Montreal Cognitive Assessment. FC increased remarkably between R.PHG and right middle temporal gyrus (R.MTG), right calcarine gyrus (R.CAL). Both NVC coefficients (DC-QSM and DC-CBF) reduced in R.PHG and increased in R.MTG and R.CAL. Both NVC coefficients in R.PHG and R.MTG increased with the improvement of cognitive ability, especially for executive function. These demonstrated that QSM and DC-QSM coefficients can be promising biomarkers for early evaluation of cognitive decline in T2DM patients and help to better understand the mechanism of NVC.
Collapse
Affiliation(s)
- Min-Hua Ni
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine , 1 Middle Section of Shiji Road, Xian yang, Shaanxi 712046 , China
| | - Ze-Yang Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Qian Sun
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Ying Yu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Yang Yang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Bo Hu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Teng Ma
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Hao Xie
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Si-Ning Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
- Faculty of Medical Technology, Xi’an Medical University , 1 Xinwang Road, Xi'an, Shaanxi 710016 , China
| | - Lan-Qiu Tao
- Student Brigade, Fourth Military Medical University , 169 Changle Road, Xi'an, Shaanxi 710032 , China
| | - Ding-Xin Yuan
- Student Brigade, Fourth Military Medical University , 169 Changle Road, Xi'an, Shaanxi 710032 , China
| | - Jun-Ling Zhu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| |
Collapse
|
6
|
Qin Z, Wu W, Liu D, Zheng C, Kang J, Zhou H, Meng X, Haacke EM, Wang L. Quantitative Susceptibility Mapping of Brain Iron Relating to Cognitive Impairment in Hypertension. J Magn Reson Imaging 2022; 56:508-515. [PMID: 34989062 DOI: 10.1002/jmri.28043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hypertension (HTN) might impair cognition. Brain iron deposition correlates with cognitive impairment. The relationship between brain iron and cognition in HTN patients is less clear. PURPOSE To measure brain susceptibility in HTN patients using quantitative susceptibility mapping (QSM) and to explore the relationship between brain iron and cognition. STUDY TYPE Retrospective cross-sectional study. SUBJECTS Sixty HTN patients (35 with mild cognitive impairment [MCI] and 25 without MCI) and 24 age, gender, and education matched controls. FIELD STRENGTH/SEQUENCE 3 T; strategically acquired gradient echo (STAGE) imaging protocol for QSM analysis. ASSESSMENT All subjects underwent Montreal Cognitive Assessment (MoCA) scoring of visuospatial/executive, naming, attention, abstraction, language, delayed memory, and orientation functions. HTN patients were divided into two groups (with and without MCI) depending on the MoCA score. Regions of interest (ROIs) were manually demarcated on the STAGE images by three independent radiologists and susceptibility were determined for bilateral frontal white matter, parietal white matter, occipital white matter, caudate nucleus (CN), putamen (PU), globus pallidus (GP), thalamus (TH), red nucleus (RN), substantia nigra (SN), and dentate nucleus (DN). STATISTICAL TESTS Analysis of variance with post-hoc least significant difference (LSD) tests and Pearson correlation coefficients (r). A P-value <0.05 was considered to be statistically significant. RESULTS The susceptibility was significantly different in CN, PU, and DN among the three groups. The susceptibility of right CN and left PU were correlated with MoCA scores (r = -0.429 and r = -0.389, respectively). The susceptibility of left PU was also correlated with delayed memory scores (r = -0.664). The susceptibility of left and right GP were correlated with naming scores (r = -0.494 and r = -0.446, respectively) and the susceptibility of left DN were correlated with visuospatial/executive scores (r = 0.479). DATA CONCLUSION QSM measured brain iron was significantly higher in CN, PU, and DN in HTN patients. Cognitive impairment was correlated with regional brain iron deposition. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Ziji Qin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenjun Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Dingxi Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jiamin Kang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Hongyan Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xueni Meng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - E Mark Haacke
- Magnetic Resonance Innovations, Bingham Farms, Michigan, USA.,Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Lixia Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|