1
|
Joyce MKP, Uchendu S, Arnsten AFT. Stress and Inflammation Target Dorsolateral Prefrontal Cortex Function: Neural Mechanisms Underlying Weakened Cognitive Control. Biol Psychiatry 2025; 97:359-371. [PMID: 38944141 PMCID: PMC11671620 DOI: 10.1016/j.biopsych.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Most mental disorders involve dysfunction of the dorsolateral prefrontal cortex (dlPFC), a recently evolved brain region that subserves working memory, abstraction, and the thoughtful regulation of attention, action, and emotion. For example, schizophrenia, depression, long COVID, and Alzheimer's disease are all associated with dlPFC dysfunction, with neuropathology often being focused in layer III. The dlPFC has extensive top-down projections, e.g., to the posterior association cortices to regulate attention and to the subgenual cingulate cortex via the rostral and medial PFC to regulate emotional responses. However, the dlPFC is particularly dependent on arousal state and is very vulnerable to stress and inflammation, which are etiological and/or exacerbating factors for most mental disorders. The cellular mechanisms by which stress and inflammation impact the dlPFC are a topic of current research and are summarized in this review. For example, the layer III dlPFC circuits that generate working memory-related neuronal firing have unusual neurotransmission, depending on NMDA receptor and nicotinic α7 receptor actions that are blocked under inflammatory conditions by kynurenic acid. These circuits also have unusual neuromodulation, with the molecular machinery to magnify calcium signaling in spines needed to support persistent firing, which must be tightly regulated to prevent toxic calcium actions. Stress rapidly weakens layer III connectivity by driving feedforward calcium-cAMP (cyclic adenosine monophosphate) opening of potassium channels on spines. This is regulated by postsynaptic noradrenergic α2A adrenergic receptor and mGluR3 (metabotropic glutamate receptor 3) signaling but dysregulated by inflammation and/or chronic stress exposure, which contribute to spine loss. Treatments that strengthen the dlPFC via pharmacological (the α2A adrenergic receptor agonist, guanfacine) or repetitive transcranial magnetic stimulation manipulation provide a rational basis for therapy.
Collapse
Affiliation(s)
- Mary Kate P Joyce
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Stacy Uchendu
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut.
| |
Collapse
|
2
|
Staniloiu A, Markowitsch HJ. Dissociative Amnesia: Remembrances Under Cover. Top Cogn Sci 2024; 16:590-607. [PMID: 38728576 DOI: 10.1111/tops.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024]
Abstract
The existence or questionability of "repressed memories" can be discussed as being a matter of definition. It seems, however, far-fetched to consider all "lost" memories as caused by encoding problems, brain damage, forgetfulness, failure to disclose events, and so on. We argue that dissociative amnesia (DA) (or "psychogenic amnesia," or "functional amnesia," or, as we favor to call it, "mnestic block syndrome") is caused by psychic alterations, but ultimately they can be traced to changes in the physiology of the brain, as we are of the opinion that all memory processes-positive or negative-alter brain functions, sometimes more permanently, sometimes transiently. We have proven this idea using functional imaging techniques, in particular fluoro-deoxy-d-glucose positron emission tomography. Having investigated dozens of patients with severe and long-lasting DA conditions, we believe it to be disrespectful to many (but not to all) of the affected patients to question their disease condition, which can be proven to be not caused by feigning, malingering, or direct brain damage.
Collapse
Affiliation(s)
- Angelica Staniloiu
- Department of Physiological Psychology, University of Bielefeld
- Department of Psychology, University of Bucharest
- Psychiatry and Psychosomatics, Oberberg Clinic Hornberg
| | | |
Collapse
|
3
|
Jensen DEA, Ebmeier KP, Suri S, Rushworth MFS, Klein-Flügge MC. Nuclei-specific hypothalamus networks predict a dimensional marker of stress in humans. Nat Commun 2024; 15:2426. [PMID: 38499548 PMCID: PMC10948785 DOI: 10.1038/s41467-024-46275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
The hypothalamus is part of the hypothalamic-pituitary-adrenal axis which activates stress responses through release of cortisol. It is a small but heterogeneous structure comprising multiple nuclei. In vivo human neuroimaging has rarely succeeded in recording signals from individual hypothalamus nuclei. Here we use human resting-state fMRI (n = 498) with high spatial resolution to examine relationships between the functional connectivity of specific hypothalamic nuclei and a dimensional marker of prolonged stress. First, we demonstrate that we can parcellate the human hypothalamus into seven nuclei in vivo. Using the functional connectivity between these nuclei and other subcortical structures including the amygdala, we significantly predict stress scores out-of-sample. Predictions use 0.0015% of all possible brain edges, are specific to stress, and improve when using nucleus-specific compared to whole-hypothalamus connectivity. Thus, stress relates to connectivity changes in precise and functionally meaningful subcortical networks, which may be exploited in future studies using interventions in stress disorders.
Collapse
Affiliation(s)
- Daria E A Jensen
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK.
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB, University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK.
- Clinic of Cognitive Neurology, University Medical Center Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103, Leipzig, Germany.
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
| | - Matthew F S Rushworth
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB, University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Miriam C Klein-Flügge
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK.
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB, University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK.
| |
Collapse
|
4
|
Corr R, Glier S, Bizzell J, Pelletier-Baldelli A, Campbell A, Killian-Farrell C, Belger A. Triple Network Functional Connectivity During Acute Stress in Adolescents and the Influence of Polyvictimization. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:867-875. [PMID: 35292406 PMCID: PMC9464656 DOI: 10.1016/j.bpsc.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Exposure to both chronic and acute stressors can disrupt functional connectivity (FC) of the default mode network (DMN), salience network (SN), and central executive network (CEN), increasing risk for negative health outcomes. During adolescence, these stress-sensitive triple networks undergo critical neuromaturation that is altered by chronic exposure to general forms of trauma or victimization. However, no work has directly examined how acute stress affects triple network FC in adolescents or whether polyvictimization-exposure to multiple categories/subtypes of victimization-influences adolescent triple network neural acute stress response. METHODS This functional magnetic resonance imaging study examined seed-to-voxel FC of the DMN, SN, and CEN during the Montreal Imaging Stress Task. Complete data from 73 participants aged 9 to 16 years (31 female) are reported. RESULTS During acute stress, FC was increased between DMN and CEN regions and decreased between the SN and the DMN and CEN. Greater polyvictimization was associated with reduced FC during acute stress exposure between the DMN seed and a cluster containing the left insula of the SN. CONCLUSIONS These results indicate that acute stress exposure alters FC between the DMN, SN, and CEN in adolescents. In addition, FC changes during stress between the DMN and SN are further moderated by polyvictimization exposure.
Collapse
Affiliation(s)
- Rachel Corr
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina.
| | - Sarah Glier
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Joshua Bizzell
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Andrea Pelletier-Baldelli
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Alana Campbell
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Candace Killian-Farrell
- Department of Child and Adolescent Psychiatry & Behavioral Health Sciences, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
5
|
Schmidt MV, Robinson OJ, Sandi C. EJN stress, brain and behaviour special issue. Eur J Neurosci 2022; 55:2053-2057. [PMID: 35569819 DOI: 10.1111/ejn.15718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Oliver J Robinson
- Neuroscience and Mental Health Group, Institute of Cognitive Neuroscience, University College London, London, UK
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Federal de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|