1
|
Bağcı B, Aydın Ş, Dalkılınç E, Çomaklı S, Küçükler S, Özdemir S. Neuroprotective potential of carvacrol: restoration of oxidative balance and mitigation of brain injury markers in isoproterenol-induced rats. Metab Brain Dis 2025; 40:211. [PMID: 40407848 PMCID: PMC12102131 DOI: 10.1007/s11011-025-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/09/2025] [Indexed: 05/26/2025]
Abstract
This research investigated the protective properties of Carvacrol (CVC) against Isoproterenol (ISO)-induced oxidative stress, neuroinflammation, and mitochondrial dysfunction in rats. The findings showed that CVC treatment did not significantly modify baseline oxidative stress levels in healthy rats but successfully alleviated ISO-induced oxidative damage by augmenting antioxidant enzyme activity and diminishing lipid peroxidation, as demonstrated by a reduction in MDA levels. These findings indicate that CVC can reinstate antioxidant capability and reduce oxidative damage. Concerning neuroinflammation, ISO therapy markedly increased the expression of pro-inflammatory markers, including TNF-α, IL-1β, c-Fos, BDNF, Nfl, and GFP, signifying a robust inflammatory and damage response. The injection of CVC following ISO exposure markedly decreased the expression of these markers, suggesting that CVC may exert a neuroprotective effect by regulating the inflammatory response and mitigating neuronal and glial damage. CVC demonstrated a notable protective effect on mitochondrial integrity, evidenced by the decreased mRNA expression of mitochondrial damage markers, including NSE, s100B, CALP1, and CALM1 in the CVC-treated groups, showing that CVC mitigates mitochondrial dysfunction. The analysis revealed no significant alterations in the expression levels of Aβ40, pTau181, and tTau across all groups, indicating that these biomarkers were not substantially influenced by CVC treatment under the study's conditions. However, β-amyloid accumulation varied significantly between groups, highlighting the need for further research to explore CVC's potential implications in amyloid-related diseases. These findings endorse CVC's neuroprotective efficacy and therapeutic potential in neurological disorders associated with oxidative stress, inflammation, and mitochondrial impairment.
Collapse
Affiliation(s)
- Betül Bağcı
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye
| | - Şeyma Aydın
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Elif Dalkılınç
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye.
| |
Collapse
|
2
|
Xia Y, Tsim KWK, Wang WX. Disruption of Copper Redox Balance and Dysfunction under In Vivo and In Vitro Alzheimer's Disease Models. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:238-249. [PMID: 40144323 PMCID: PMC11934196 DOI: 10.1021/envhealth.4c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 03/28/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder disease mainly caused by extracellular senile plaques (SP) formed by β-amyloid (Aβ1-42) protein deposits. Copper (Cu) is an essential metal involved in neural system, and its homeostasis is the key to maintain its proper function. Herein, the subcellular locations of Cu(I) and Cu(II) in human neurodegenerative disease SH-SY5Y cells and AD mouse brains were imaged. We found that the content of Cu(II) decreased while that of Cu(I) increased under Aβ exposure, which were further verified in the brain tissues of the AD mouse model, strongly suggesting the disruption of Cu homeostasis under Aβ exposure or AD. Remarkably, the mitochondrial and lysosomal Cu(II) decreased significantly, whereas Cu(I) decreased in mitochondria but increased in lysosome. Lysosomes digested the damaged mitochondria via mitophagy to remove excess Cu(I) and maintain Cu homeostasis. The Aβ induced Cu(I) in mitochondria resulted in an overformation of reactive oxygen species and altered the morphology of this organelle. Due to the oxidative stress, glutathione (GSH) was converted into glutathione disulfide (GSSG), and Cu(I) bound with GSH was further released into the cytoplasm and absorbed by the lysosome. Transcriptomic analysis showed that genes (ATP7A/B) related to Cu transportation were upregulated, whereas genes related to mitochondrial complex were down-regulated, representing the damage of this organelle. This study demonstrated that Aβ exposure caused the disruption of intracellular homeostasis by reducing Cu(II) to Cu(I) and damaging the mitochondria, which further triggered detoxification by the lysosome. Our finding provided new insights in Aβ and AD induced Cu redox transformation and toxicity.
Collapse
Affiliation(s)
- Yiteng Xia
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong
Kong, China
- Research
Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Karl W. K. Tsim
- Division
of Life Science, Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong
Kong, China
- Research
Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Chen D, Sun Y. Current Status of Plant-Based Bioactive Compounds as Therapeutics in Alzheimer's Diseases. J Integr Neurosci 2025; 24:23090. [PMID: 39862001 DOI: 10.31083/jin23090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) is a common central neurodegenerative disease disorder characterized primarily by cognitive impairment and non-cognitive neuropsychiatric symptoms that significantly impact patients' daily lives and behavioral functioning. The pathogenesis of AD remains unclear and current Western medicines treatment are purely symptomatic, with a singular pathway, limited efficacy, and substantial toxicity and side effects. In recent years, as research into AD has deepened, there has been a gradual increase in the exploration and application of medicinal plants for the treatment of AD. Numerous studies have shown that medicinal plants and their active ingredients can potentially mitigate AD by regulating various molecular mechanisms, including the production and aggregation of pathological proteins, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, neurogenesis, neurotransmission, and the brain-gut microbiota axis. In this review, we analyzed the pathogenesis of AD and comprehensively summarized recent advancements in research on medicinal plants for the treatment of AD, along with their underlying mechanisms and clinical evidence. Ultimately, we aimed to provide a reference for further investigation into the specific mechanisms through which medicinal plants prevent and treat AD, as well as for the identification of efficacious active ingredients derived from medicinal plants.
Collapse
Affiliation(s)
- Dan Chen
- Department of General Medicine, The Second Affiliated Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China
| | - Yun Sun
- Department of General Medicine, The Second Affiliated Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China
| |
Collapse
|
4
|
Rong K, Li Z, Wu X, Gao S, Zhao J, Yang J, Jiang X, Zhang J, Tang W. Natural phenol carbamates: Selective BuChE/FAAH dual inhibitors show neuroprotection in an Alzheimer's disease mouse model. Eur J Med Chem 2025; 281:117003. [PMID: 39481228 DOI: 10.1016/j.ejmech.2024.117003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
FAAH inhibition can indirectly enhance endocannabinoid signaling to therapeutic levels, effectively preventing or slowing its progression of Alzheimer's disease (AD). Hence, the search for effective dual FAAH/cholinesterase inhibitors is considerable need for disease-modifying therapies. To this aim, we designed, synthesized, and tested three series of natural phenol carbamates. The majority of carbamates proved to be potent on a single target, amongst them, compound D12 containing paeonol motif was identified as an effective dual BuChE/FAAH inhibitor, with well-balanced nanomolar activity (IC50 = 81 and 400 nM for hBuChE and hFFAH, respectively). D12 possessed BBB penetrating ability, benign safety, neuroprotection and pseudo-irreversible BuChE inhibition (Kd = 2.11 μM, k2 = 2.27 min-1), showing good drug-like properties. D12 also modulated the BV2 microglial polarization to inhibit neuroinflammation. In vivo study verified that D12 improved Aβ1-41-induced learning impairments in AD mouse model for both short- and long-term memory responses. Thus, the dual activity of D12 could lead to a potentially more effective treatment for the counteraction of AD progression.
Collapse
Affiliation(s)
- Kuanrong Rong
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, PR China
| | - Ziyun Li
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, PR China
| | - Xiaoming Wu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, PR China
| | - Shan Gao
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, PR China
| | - Jie Zhao
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, PR China
| | - Jing Yang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, PR China
| | - Xiaorui Jiang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, PR China
| | - Jing Zhang
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, PR China.
| | - Wenjian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, PR China; Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, PR China.
| |
Collapse
|
5
|
Tareen FK, Catenacci L, Perteghella S, Sorrenti M, Bonferoni MC. Carvacrol Essential Oil as a Neuroprotective Agent: A Review of the Study Designs and Recent Advances. Molecules 2024; 30:104. [PMID: 39795159 PMCID: PMC11721141 DOI: 10.3390/molecules30010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Neurodegenerative diseases were mostly perceived as diseases of ageing populations, but now-a-days, these diseases pose a threat to populations of all age groups despite significant improvements in quality of life. Almost all essential oils (EOs) have been reported to have some neuroprotective abilities and have been used as supplements for good mental health over the centuries. This review highlights the therapeutic potential of one such monoterpene phenolic EO, carvacrol (CV), that has the potential to be used as a main therapeutic intervention for neurodegenerative disorders. Three libraries, Google Scholar, PubMed, and ScienceDirect, were explored for research studies related to the neuroprotective roles of CV. All the research articles from these libraries were sorted out, with the first article tracing back to 2009, and the latest article was published in 2024. The positive effects of CV in the treatment of Alzheimer's and Parkinson's Diseases, multiple sclerosis, ischemia, and behavioural disorders have been supported with evidence. This review not only focused on study designs and the pharmacological pathways taken by CV for neuroprotection but also focused on demographics, illustrating the trend of CV research studies in certain countries and the preferences for the use of in vitro or in vivo models in studies. Our review provides useful evidence about the neuroprotective potential of CV; however, a lack of studies was observed regarding CV encapsulation in proper dosage forms, in particular nanoparticles, which could be further explored for CV delivery to the central nervous system.
Collapse
Affiliation(s)
| | | | | | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (F.K.T.); (L.C.); (S.P.); (M.C.B.)
| | | |
Collapse
|
6
|
Han L, Chen W, Li J, Zhao Y, Zong Y, He Z, Du R. Palmatine improves cognitive dysfunction in Alzheimer's disease model rats through autophagy pathway and regulation of gut microbiota. Brain Res 2024; 1835:148932. [PMID: 38609032 DOI: 10.1016/j.brainres.2024.148932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/17/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Alzheimer's disease (AD) is a primary degenerative encephalopathy that first appeared as a decline in memory and learning skills. Over time, the condition's severity grew. Palmatine (Pal) alleviates Alzheimer's disease symptoms, which has neuroprotective benefits. Numerous investigations have demonstrated a close relationship among AD and gut structure changes. The aim of the research was investigating whether the improvement of Pal on AD is linked to regulating gut flora and autophagy. First, we used Aβ1-40 to induce apoptosis in HT22 cells. After Pal treatment, apoptosis can be improved. Then, We used bilateral intracranial hippocampal injection of Aβ1-40 for establishing the AD model, after treatment with Pal, the morris water maze experiment and eight-arm maze test demonstrated that Pal enhanced the AD rats' capacity for learning and memory, HE staining illustrated that Pal improved the morphological abnormalities of brain cells and gut tissue damage. Pal reduced the death of hippocampus neurons, as shown by Nissl staining. Pal substantially reduced Tau hyperphosphorylation and Aβ accumulation in the brain, according to immunohistochemical labelling. Pal improved the expression of LC3, Beclin 1, AMPK, and suppressed the expression of mTOR and P62, as validated by RT-qPCR and immunofluorescence labelling. This suggests that Pal's treatment of AD may be associated with the control of the AMPK/mTOR autophagy signalling system. 16S rRNA sequencing and short-chain fatty acids (SCFAs) content detection analysis illustrated that Pal has the potential to enhance the content of SCFAs, reverse the alterations in gut microorganisms. It has been showed by the study that Pal could improve AD by activating autophagy signaling pathway and improving gut barrier changes.
Collapse
Affiliation(s)
- Lu Han
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education of China, Changchun 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun 130118, China.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education of China, Changchun 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun 130118, China.
| |
Collapse
|
7
|
Espargaró A, Álvarez-Berbel I, Busquets MA, Sabate R. In Vivo Assays for Amyloid-Related Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:433-458. [PMID: 38598824 DOI: 10.1146/annurev-anchem-061622-023326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Amyloid-related diseases, such as Alzheimer's and Parkinson's disease, are devastating conditions caused by the accumulation of abnormal protein aggregates known as amyloid fibrils. While assays involving animal models are essential for understanding the pathogenesis and developing therapies, a wide array of standard analytical techniques exists to enhance our understanding of these disorders. These techniques provide valuable information on the formation and propagation of amyloid fibrils, as well as the pharmacokinetics and pharmacodynamics of candidate drugs. Despite ethical concerns surrounding animal use, animal models remain vital tools in the search for treatments. Regardless of the specific animal model chosen, the analytical methods used are usually standardized. Therefore, the main objective of this review is to categorize and outline the primary analytical methods used in in vivo assays for amyloid-related diseases, highlighting their critical role in furthering our understanding of these disorders and developing effective therapies.
Collapse
Affiliation(s)
- Alba Espargaró
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
- 2Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Irene Álvarez-Berbel
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
| | - Maria Antònia Busquets
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
- 2Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Raimon Sabate
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
- 2Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Han L, Chen W, Zong Y, Zhao Y, Li J, He Z, Du R. Analysis of the mechanism of fibrauretine alleviating Alzheimer's disease based on transcriptomics and proteomics. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:361-377. [PMID: 38926843 PMCID: PMC11211758 DOI: 10.4196/kjpp.2024.28.4.361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 06/28/2024]
Abstract
The dried rattan stem of the Fibraurea Recisa Pierre plant contains the active ingredient known as fibrauretine (FN). Although it greatly affects Alzheimer's disease (AD), the mechanism of their effects still remains unclear. Proteomics and transcriptomics analysis methods were used in this study to determine the mechanism of FN in the treatment of AD. AD model is used through bilateral hippocampal injection of Aβ1-40. After successful modeling, FN was given for 30 days. The results showed that FN could improve the cognitive dysfunction of AD model rats, reduce the expression of Aβ and P-Tau, increase the content of acetylcholine and reduce the activity of acetylcholinesterase. The Kyoto Encyclopedia of Genes and Genomes enriched differentially expressed genes and proteins are involved in signaling pathways including metabolic pathway, AD, pathway in cancer, PI3K-AKT signaling pathway, and cAMP signaling pathway. Transcriptomics and proteomics sequencing resulted in 19 differentially expressed genes and proteins. Finally, in contrast to the model group, after FN treatment, the protein expressions and genes associated with the PI3K-AKT pathway were significantly improved in RT-qPCR and Western blot and assays. This is consistent with the findings of transcriptomic and proteomic analyses. Our study found that, FN may improve some symptoms of AD model rats through PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Lu Han
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education of China, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education of China, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun 130118, China
| |
Collapse
|
9
|
Cui H, Zhang C, Su K, Fan T, Chen L, Yang Z, Zhang M, Li J, Zhang Y, Liu J. Oregano Essential Oil in Livestock and Veterinary Medicine. Animals (Basel) 2024; 14:1532. [PMID: 38891579 PMCID: PMC11171306 DOI: 10.3390/ani14111532] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
With a growing global concern over food safety and animal welfare issues, the livestock and veterinary industries are undergoing unprecedented changes. These changes have not only brought challenges within each industry, but also brought unprecedented opportunities for development. In this context, the search for natural and safe products that can effectively replace traditional veterinary drugs has become an important research direction in the fields of animal husbandry and veterinary medicine. Oregano essential oil (OEO), as a natural extract, is gradually emerging in the fields of animal husbandry and veterinary medicine with its unique antibacterial, antioxidant, and multiple other biological activities. OEO not only has a wide antibacterial spectrum, effectively fighting against a variety of pathogenic microorganisms, but also, because of its natural properties, helps us to avoid traditional veterinary drugs that may bring drug residues or cause drug resistance problems. This indicates OEO has great application potential in animal disease treatment, animal growth promotion, and animal welfare improvement. At present, the application of OEO in the fields of animal husbandry and veterinary medicine has achieved preliminary results. Studies have shown that adding OEO to animal feed can significantly improve the growth performance and health status of animals and reduce the occurrence of disease. At the same time, pharmacokinetic studies in animals show that the absorption, distribution, metabolism, and excretion processes of OEO in animals shows good bioavailability. In summary, oregano essential oil (OEO), as a substitute for natural veterinary drugs with broad application prospects, is gradually becoming a research hotspot in the field of animal husbandry and veterinary medicine. In the future, we look forward to further tapping the potential of OEO through more research and practice and making greater contributions to the sustainable development of the livestock and veterinary industries.
Collapse
Affiliation(s)
- Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Kai Su
- Department of Agricultural and Animal Husbandry Engineering, Cangzhou Technical College, Cangzhou 061000, China; (K.S.); (T.F.)
| | - Tingli Fan
- Department of Agricultural and Animal Husbandry Engineering, Cangzhou Technical College, Cangzhou 061000, China; (K.S.); (T.F.)
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Zitong Yang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Mingda Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Jiaqi Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Yuxin Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| |
Collapse
|
10
|
Ribeiro J, Lopes I, Gomes AC. A New Perspective for the Treatment of Alzheimer's Disease: Exosome-like Liposomes to Deliver Natural Compounds and RNA Therapies. Molecules 2023; 28:6015. [PMID: 37630268 PMCID: PMC10458935 DOI: 10.3390/molecules28166015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
With the increment of the aging population in recent years, neurodegenerative diseases exert a major global disease burden, essentially as a result of the lack of treatments that stop the disease progression. Alzheimer's Disease (AD) is an example of a neurodegenerative disease that affects millions of people globally, with no effective treatment. Natural compounds have emerged as a viable therapy to fill a huge gap in AD management, and in recent years, mostly fueled by the COVID-19 pandemic, RNA-based therapeutics have become a hot topic in the treatment of several diseases. Treatments of AD face significant limitations due to the complex and interconnected pathways that lead to their hallmarks and also due to the necessity to cross the blood-brain barrier. Nanotechnology has contributed to surpassing this bottleneck in the treatment of AD by promoting safe and enhanced drug delivery to the brain. In particular, exosome-like nanoparticles, a hybrid delivery system combining exosomes and liposomes' advantageous features, are demonstrating great potential in the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Joana Ribeiro
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.R.); (I.L.)
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ivo Lopes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.R.); (I.L.)
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.R.); (I.L.)
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Vassiliou E, Awoleye O, Davis A, Mishra S. Anti-Inflammatory and Antimicrobial Properties of Thyme Oil and Its Main Constituents. Int J Mol Sci 2023; 24:ijms24086936. [PMID: 37108100 PMCID: PMC10138399 DOI: 10.3390/ijms24086936] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Thyme oil (TO) is derived from the flowers of various plants belonging to the genus Thymus. It has been used as a therapeutic agent since ancient times. Thymus comprises numerous molecular species exhibiting diverse therapeutic properties that are dependent on their biologically active concentrations in the extracted oil. It is therefore not surprising that oils extracted from different thyme plants present different therapeutic properties. Furthermore, the phenophase of the same plant species has been shown to yield different anti-inflammatory properties. Given the proven efficacy of TO and the diversity of its constituents, a better understanding of the interactions of the various components is warranted. The aim of this review is to gather the latest research findings regarding TO and its components with respect to their immunomodulatory properties. An optimization of the various components has the potential to yield more effective thyme formulations with increased potency.
Collapse
Affiliation(s)
- Evros Vassiliou
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| | - Oreoluwa Awoleye
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| | - Amanda Davis
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| | - Sasmita Mishra
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| |
Collapse
|
12
|
Caputo L, Amato G, De Martino L, De Feo V, Nazzaro F. Anti-Cholinesterase and Anti-α-Amylase Activities and Neuroprotective Effects of Carvacrol and p-Cymene and Their Effects on Hydrogen Peroxide Induced Stress in SH-SY5Y Cells. Int J Mol Sci 2023; 24:ijms24076073. [PMID: 37047044 PMCID: PMC10093841 DOI: 10.3390/ijms24076073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Several researchers have demonstrated the health and pharmacological properties of carvacrol and p-cymene, monoterpenes of aromatic plants. This study investigated these compounds' possible anti-cholinesterase, anti-α-amylase, and neuroprotective effects. We evaluated the anti-acetylcholinesterase and anti-α-amylase activities at different concentrations of the compounds. The maximum non-toxic dose of carvacrol and p-cymene against SH-SY5Y neuroblastoma cells was determined using an MTT assay. The neuroprotective effects of the compounds were evaluated on H2O2-induced stress in SH-SY5Y cells, studying the expression of caspase-3 using Western blotting assays. Carvacrol showed inhibitory activities against acetylcholinesterase (IC50 = 3.8 µg/mL) and butyrylcholinesterase (IC50 = 32.7 µg/mL). Instead, the anti-α-amylase activity of carvacrol resulted in an IC50 value of 171.2 μg/mL After a pre-treatment with the maximum non-toxic dose of carvacrol and p-cymene, the expression of caspase-3 was reduced compared to cells treated with H2O2 alone. Carvacrol and p-cymene showed in vitro anti-enzymatic properties, and may act as neuroprotective agents against oxidative stress. Further studies are necessary to elucidate their possible use as coadjutants in preventing and treating AD in diabetic patients.
Collapse
Affiliation(s)
- Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy
| | - Filomena Nazzaro
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy
| |
Collapse
|
13
|
Fišar Z. Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer's Disease and Identifying Promising Drug Targets. Biomolecules 2022; 12:1676. [PMID: 36421690 PMCID: PMC9687482 DOI: 10.3390/biom12111676] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Damage or loss of brain cells and impaired neurochemistry, neurogenesis, and synaptic and nonsynaptic plasticity of the brain lead to dementia in neurodegenerative diseases, such as Alzheimer's disease (AD). Injury to synapses and neurons and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles are considered the main morphological and neuropathological features of AD. Age, genetic and epigenetic factors, environmental stressors, and lifestyle contribute to the risk of AD onset and progression. These risk factors are associated with structural and functional changes in the brain, leading to cognitive decline. Biomarkers of AD reflect or cause specific changes in brain function, especially changes in pathways associated with neurotransmission, neuroinflammation, bioenergetics, apoptosis, and oxidative and nitrosative stress. Even in the initial stages, AD is associated with Aβ neurotoxicity, mitochondrial dysfunction, and tau neurotoxicity. The integrative amyloid-tau-mitochondrial hypothesis assumes that the primary cause of AD is the neurotoxicity of Aβ oligomers and tau oligomers, mitochondrial dysfunction, and their mutual synergy. For the development of new efficient AD drugs, targeting the elimination of neurotoxicity, mutual potentiation of effects, and unwanted protein interactions of risk factors and biomarkers (mainly Aβ oligomers, tau oligomers, and mitochondrial dysfunction) in the early stage of the disease seems promising.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| |
Collapse
|
14
|
Porsteinsson AP, Rangaraju S, Spires-Jones TL, O'Banion MK. Alzheimer's disease and related dementias: From risk factors to disease pathogenesis. Eur J Neurosci 2022; 56:5337-5341. [PMID: 36324230 DOI: 10.1111/ejn.15857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Anton P Porsteinsson
- Department of Psychiatry and Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tara L Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - M Kerry O'Banion
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
| |
Collapse
|