1
|
Williams PJ, Zipkin EF, Brodie JF. Deep biogeographic barriers explain divergent global vertebrate communities. Nat Commun 2024; 15:2457. [PMID: 38548741 PMCID: PMC10978928 DOI: 10.1038/s41467-024-46757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Biogeographic history can lead to variation in biodiversity across regions, but it remains unclear how the degree of biogeographic isolation among communities may lead to differences in biodiversity. Biogeographic analyses generally treat regions as discrete units, but species assemblages differ in how much biogeographic history they share, just as species differ in how much evolutionary history they share. Here, we use a continuous measure of biogeographic distance, phylobetadiversity, to analyze the influence of biogeographic isolation on the taxonomic and functional diversity of global mammal and bird assemblages. On average, biodiversity is better predicted by environment than by isolation, especially for birds. However, mammals in deeply isolated regions are strongly influenced by isolation; mammal assemblages in Australia and Madagascar, for example, are much less diverse than predicted by environment alone and contain unique combinations of functional traits compared to other regions. Neotropical bat assemblages are far more functionally diverse than Paleotropical assemblages, reflecting the different trajectories of bat communities that have developed in isolation over tens of millions of years. Our results elucidate how long-lasting biogeographic barriers can lead to divergent diversity patterns, against the backdrop of environmental determinism that predominantly structures diversity across most of the world.
Collapse
Affiliation(s)
- Peter J Williams
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| | - Elise F Zipkin
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jedediah F Brodie
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
- Wildlife Biology Program, University of Montana, Missoula, MT, 59812, USA
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Malaysia
| |
Collapse
|
2
|
Segovia RA. Temperature predicts maximum tree-species richness and water availability and frost shape the residual variation. Ecology 2023; 104:e4000. [PMID: 36799257 DOI: 10.1002/ecy.4000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/08/2022] [Accepted: 01/05/2023] [Indexed: 02/18/2023]
Abstract
The kinetic hypothesis of biodiversity proposes that temperature is the main driver of variation in species richness, given its exponential effect on biological activity and, potentially, on rates of diversification. However, limited support for this hypothesis has been found to date. I tested the fit of this model to the variation of tree-species richness along a continuous latitudinal gradient in the Americas. I found that the kinetic hypothesis accurately predicts the upper bound of the relationship between the inverse of mean annual temperature (1/kT) and the natural logarithm of species richness, at a broad scale. In addition, I found that water availability and the number of days with freezing temperatures explain part of the residual variation of the upper bound model. The finding of the model fitting on the upper bound rather than on the mean values suggest that the kinetic hypothesis is modeling the variation of the potential maximum species richness per unit of temperature. Likewise, the distribution of the residuals of the upper bound model in function of the number of days with freezing temperatures suggest the importance of environmental thresholds rather than gradual variation driving the observable variation in species richness.
Collapse
Affiliation(s)
- Ricardo A Segovia
- Institute of Ecology and Biodiversity (IEB), Santiago, Chile.,Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
3
|
Schmidt C, Dray S, Garroway CJ. Genetic and species-level biodiversity patterns are linked by demography and ecological opportunity. Evolution 2021; 76:86-100. [PMID: 34806781 DOI: 10.1111/evo.14407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022]
Abstract
The processes that give rise to species richness gradients are not well understood, but may be linked to resource-based limits on the number of species a region can support. Ecological limits placed on regional species richness should also affect population demography, suggesting that these processes could also generate genetic diversity gradients. If true, we might better understand how broad-scale biodiversity patterns are formed by identifying the common causes of genetic diversity and species richness. We develop a hypothetical framework based on the consequences of regional variation in ecological limits set by resource availability and heterogeneity to simultaneously explain spatial patterns of species richness and neutral genetic diversity. Repurposing raw genotypic data spanning 38 mammal species sampled across 801 sites in North America, we show that estimates of genome-wide genetic diversity and species richness share spatial structure. Notably, species richness hotspots tend to harbor lower levels of within-species genetic variation. A structural equation model encompassing eco-evolutionary processes related to resource availability, habitat heterogeneity, and contemporary human disturbance supports the spatial patterns we detect. These results suggest broad-scale patterns of species richness and genetic diversity could both partly be caused by intraspecific demographic and evolutionary processes acting simultaneously across species.
Collapse
Affiliation(s)
- Chloé Schmidt
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Stéphane Dray
- Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, F-69100, France
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
4
|
Leopold DR, Fukami T. Greater local diversity under older species pools may arise from enhanced competitive equivalence. Ecol Lett 2020; 24:310-318. [PMID: 33216438 DOI: 10.1111/ele.13647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/04/2023]
Abstract
Ecological communities typically contain more species when located within geologically older regions. This pattern is traditionally attributed to the long-term accumulation of species in the regional species pool, with local species interactions playing a minor role. We provide evidence suggesting a more important role of local species interactions than generally assumed. We assembled 320 communities of root-associated fungi under 80 species pools, varying species pool richness and the mean age of the sites from which the fungi were collected across a 4-myr soil chronosequence. We found that local diversity increased more with increasing species pool richness when species were from older sites. We also found that older species pools had lower functional and phylogenetic diversity, indicating greater competitive equivalence among species. Our results suggest that older regions have higher local richness not simply because older pools are more speciose but also because species have evolved traits that allow them to locally co-occur.
Collapse
Affiliation(s)
- Devin R Leopold
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA.,Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR, 97331, USA
| | - Tadashi Fukami
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA
| |
Collapse
|
5
|
Latitude- and climate-associated patterns in small mammal fauna changes of the West Yakutia. RUSSIAN JOURNAL OF THERIOLOGY 2019. [DOI: 10.15298/rusjtheriol.18.2.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Etienne RS, Cabral JS, Hagen O, Hartig F, Hurlbert AH, Pellissier L, Pontarp M, Storch D. A Minimal Model for the Latitudinal Diversity Gradient Suggests a Dominant Role for Ecological Limits. Am Nat 2019; 194:E122-E133. [DOI: 10.1086/705243] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|