1
|
Butler D, Kammarchedu V, Zhou K, Peeke L, Lyle L, Snyder DW, Ebrahimi A. Cellulose-Based Laser-Induced Graphene Devices for Electrochemical Monitoring of Bacterial Phenazine Production and Viability. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 378:133090. [PMID: 36644326 PMCID: PMC9835725 DOI: 10.1016/j.snb.2022.133090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As an easily disposable substrate with a microporous texture, paper is a well-suited, generic substrate to build analytical devices for studying bacteria. Using a multi-pass lasing process, cellulose-based laser-induced graphene (cLIG) with a sheet resistance of 43.7 ± 2.3 Ωsq-1 is developed and utilized in the fabrication of low-cost and environmentally-friendly paper sensor arrays. Two case studies with Pseudomonas aeruginosa and Escherichia coli demonstrate the practicality of the cLIG sensors for the electrochemical analysis of bacteria. The first study measures the time-dependent profile of phenazines released from both planktonic (up to 60 h) and on-chip-grown (up to 22 h) Pseudomonas aeruginosa cultures. While similarities do exist, marked differences in phenazine production are seen with cells grown directly on cLIG compared to the planktonic culture. Moreover, in planktonic cultures, pyocyanin levels increase early on and plateau around 20 h, while optical density measurements increase monotonically over the duration of testing. The second study monitors the viability and metabolic activity of Escherichia coli using a resazurin-based electrochemical assay. These results demonstrate the utility of cLIG paper sensors as an inexpensive and versatile platform for monitoring bacteria and could enable new opportunities in high-throughput antibiotic susceptibility testing, ecological studies, and biofilm studies.
Collapse
Affiliation(s)
- Derrick Butler
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, PA 16802
| | - Vinay Kammarchedu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, PA 16802
- Center for Biodevices, The Pennsylvania State University, University Park, PA 16802
| | - Keren Zhou
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
| | - Lachlan Peeke
- Applied Research Laboratory - Electronic Materials and Devices Department, The Pennsylvania State University, University Park, PA 16802
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
| | - Luke Lyle
- Applied Research Laboratory - Electronic Materials and Devices Department, The Pennsylvania State University, University Park, PA 16802
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
| | - David W Snyder
- Applied Research Laboratory - Electronic Materials and Devices Department, The Pennsylvania State University, University Park, PA 16802
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802
| | - Aida Ebrahimi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, PA 16802
- Center for Biodevices, The Pennsylvania State University, University Park, PA 16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
2
|
Schmid PJ, Maitz S, Plank N, Knaipp E, Pölzl S, Kittinger C. Fiber-based food packaging materials in view of bacterial growth and survival capacities. Front Microbiol 2023; 14:1099906. [PMID: 36778857 PMCID: PMC9909220 DOI: 10.3389/fmicb.2023.1099906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Understanding interactions of bacteria with fiber-based packaging materials is fundamental for appropriate food packaging. We propose a laboratory model to evaluate microbial growth and survival in liquid media solely consisting of packaging materials with different fiber types. We evaluated food contaminating species (Escherichia coli, Staphylococcus aureus, Bacillus cereus), two packaging material isolates and bacterial endospores for their growth abilities. Growth capacities differed substantially between the samples as well as between bacterial strains. Growth and survival were strongest for the packaging material entirely made of recycled fibers (secondary food packaging) with up to 10.8 log10 CFU/ml for the packaging isolates. Among the food contaminating species, B. cereus and E. coli could grow in the sample of entirely recycled fibers with maxima of 6.1 log10 and 8.6 log10 CFU/mL, respectively. Escherichia coli was the only species that was able to grow in bleached fresh fibers up to 7.0 log10 CFU/mL. Staphylococcus aureus perished in all samples and was undetectable after 1-6 days after inoculation, depending on the sample. The packaging material strains were isolated from recycled fibers and could grow only in samples containing recycled fibers, indicating an adaption to this environment. Spores germinated only in the completely recycled sample. Additionally, microbial digestion of cellulose and xylan might not be a crucial factor for growth. This is the first study describing bacterial growth in food packaging materials itself and proposing functionalization strategies toward active food packaging through pH-lowering.
Collapse
|
3
|
Calibrating spatiotemporal models of microbial communities to microscopy data: A review. PLoS Comput Biol 2022; 18:e1010533. [PMID: 36227846 PMCID: PMC9560168 DOI: 10.1371/journal.pcbi.1010533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Spatiotemporal models that account for heterogeneity within microbial communities rely on single-cell data for calibration and validation. Such data, commonly collected via microscopy and flow cytometry, have been made more accessible by recent advances in microfluidics platforms and data processing pipelines. However, validating models against such data poses significant challenges. Validation practices vary widely between modelling studies; systematic and rigorous methods have not been widely adopted. Similar challenges are faced by the (macrobial) ecology community, in which systematic calibration approaches are often employed to improve quantitative predictions from computational models. Here, we review single-cell observation techniques that are being applied to study microbial communities and the calibration strategies that are being employed for accompanying spatiotemporal models. To facilitate future calibration efforts, we have compiled a list of summary statistics relevant for quantifying spatiotemporal patterns in microbial communities. Finally, we highlight some recently developed techniques that hold promise for improved model calibration, including algorithmic guidance of summary statistic selection and machine learning approaches for efficient model simulation.
Collapse
|
4
|
Feng G, Yuan X, Li P, Tian R, Hou Z, Fu X, Chang Z, Wang J, Li Q, Zhao X. G protein-coupled receptor-in-paper, a versatile chromatographic platform to study receptor-drug interaction. J Chromatogr A 2020; 1637:461835. [PMID: 33383241 DOI: 10.1016/j.chroma.2020.461835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022]
Abstract
High-performance affinity chromatography is limited by its high cost and high pressure. Paper is made up of porous fiber networks and has the properties of low cost, ease of fabrication, and biodegradable. Due to these advantages, herein, we immobilized beta2-adrenoceptor (β2-AR) onto the surface of the polytetrafluoroethylene membrane, a paper-based material, and constructed a G protein-coupled receptor (GPCR)-in-paper chromatographic platform. This platform was characterized by Fourier transform infrared spectroscopy, fluorescence analysis, X-ray photoelectron spectroscopy, and chromatographic studies. These morphological and elemental analysis showed that β2-AR was successfully immobilized on the paper surface. The specific drugs have good retentions on the GPCR-in-paper chromatographic platform. The association constants of salbutamol, terbutaline and bambuterol to β2-AR were calculated to be 2.02 × 104 M-1, 1.15 × 104 M-1, 1.75 × 104 M-1 by adsorption energy distribution, which were in good line with the values from frontal analysis, zonal elution and previous literatures. We demonstrated that the GPCR-in-paper platform was cost-effective, easy to be modified for protein immobilization, and applicable in the receptor-drug interaction analysis. We believe such a platform sheds new light on paper chromatography for receptor-drug interaction analysis and other applications.
Collapse
Affiliation(s)
- Gangjun Feng
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinyi Yuan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ping Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Rui Tian
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhaoling Hou
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaoying Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhongman Chang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
5
|
Gul I, Bogale TF, Chen Y, Yang X, Fang R, Feng J, Gao H, Tang L. A paper-based whole-cell screening assay for directed evolution-driven enzyme engineering. Appl Microbiol Biotechnol 2020; 104:6013-6022. [DOI: 10.1007/s00253-020-10615-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
|