1
|
Augusteyn J, McCarthy MA, Robley A, Pople A, Nolan B, Hemson G, Melzer R, Richards S, Dinwoodie A. Bringing back the endangered bridled nail-tailed wallaby at Taunton National Park (Scientific) through effective predator control. WILDLIFE RESEARCH 2022. [DOI: 10.1071/wr21067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Augusteyn J, Nolan B. Evaluating methods for controlling feral cats that minimise non‐target impacts at Taunton National Park (Scientific). ECOLOGICAL MANAGEMENT & RESTORATION 2021. [DOI: 10.1111/emr.12536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Palmer R, Anderson H, Richards B, Craig MD, Gibson L. Does aerial baiting for controlling feral cats in a heterogeneous landscape confer benefits to a threatened native meso-predator? PLoS One 2021; 16:e0251304. [PMID: 33961676 PMCID: PMC8104397 DOI: 10.1371/journal.pone.0251304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/24/2021] [Indexed: 11/19/2022] Open
Abstract
Introduced mammalian predators can have devastating impacts on recipient ecosystems and disrupt native predator–prey relationships. Feral cats (Felis catus) have been implicated in the decline and extinction of many Australian native species and developing effective and affordable methods to control them is a national priority. While there has been considerable progress in the lethal control of feral cats, effective management at landscape scales has proved challenging. Justification of the allocation of resources to feral cat control programs requires demonstration of the conservation benefit baiting provides to native species susceptible to cat predation. Here, we examined the effectiveness of a landscape-scale Eradicat® baiting program to protect threatened northern quolls (Dasyurus hallucatus) from feral cat predation in a heterogeneous rocky landscape in the Pilbara region of Western Australia. We used camera traps and GPS collars fitted to feral cats to monitor changes in activity patterns of feral cats and northern quolls at a baited treatment site and unbaited reference site over four years. Feral cat populations appeared to be naturally sparse in our study area, and camera trap monitoring showed no significant effect of baiting on cat detections. However, mortality rates of collared feral cats ranged from 18–33% after baiting, indicating that the program was reducing cat numbers. Our study demonstrated that feral cat baiting had a positive effect on northern quoll populations, with evidence of range expansion at the treatment site. We suggest that the rugged rocky habitat preferred by northern quolls in the Pilbara buffered them to some extent from feral cat predation, and baiting was sufficient to demonstrate a positive effect in this relatively short-term project. A more strategic approach to feral cat management is likely to be required in the longer-term to maximise the efficacy of control programs and thereby improve the conservation outlook for susceptible threatened fauna.
Collapse
Affiliation(s)
- Russell Palmer
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
| | - Hannah Anderson
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
| | - Brooke Richards
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
| | - Michael D. Craig
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
- School of Biological Sciences, University of Western Australia, Western Australia, Australia
- Environmental and Conservation Sciences, Murdoch University, Western Australia, Australia
| | - Lesley Gibson
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
- School of Biological Sciences, University of Western Australia, Western Australia, Australia
- * E-mail:
| |
Collapse
|
4
|
Fancourt BA, Augusteyn J, Cremasco P, Nolan B, Richards S, Speed J, Wilson C, Gentle MN. Measuring, evaluating and improving the effectiveness of invasive predator control programs: Feral cat baiting as a case study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111691. [PMID: 33272660 DOI: 10.1016/j.jenvman.2020.111691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Reducing the impacts of invasive predators is a key objective for conservation managers, livestock producers and human health agencies globally. The efficacy of invasive predator control programs, however, is highly variable. To improve control efficacy, managers require a fundamental understanding of the factors that contribute to the success or failure of a control program. Using a predator baiting program as a case study, we measured the efficacy of baiting as a control tool to significantly reduce feral cat (Felis catus) populations. We used camera traps and cat-borne GPS collars to monitor changes in feral cat populations at a baited site and an unbaited site, using a Before-After, Control-Impact (BACI) design. We also identified five key elements required for a successful baiting program (bait encounter rate, availability, attractiveness, palatability and lethality) and simultaneously measured these to identify areas for potential improvement. Baiting was ineffective at reducing feral cat populations; collared cat mortality was only 11% (1/9), with camera traps revealing negligible reductions in the number of cat detection events (9%), naïve occupancy (15%), and no significant change in the relative abundance of feral cats (F1,54 = 0.8641, P = 0.357). Several factors contributed to the poor control efficacy. Bait encounter rates were low, with cats active along tracks (where baits were laid) < 4% of the time. Cats encountered only 14% (7/50) of monitored baits, but none were eaten. Initially, baits appeared attractive to cats; however meat ants and desiccation rapidly decreased bait palatability. Bait availability to cats declined rapidly, with 36% of monitored baits (18/50) removed by non-target species within the first 48 h. The mortality of one collared cat and chemical assays confirmed that, on average, each bait contained sufficient 1080 to kill a large (>5 kg) feral cat. Our findings suggest that altering bait deployment patterns, increasing bait densities and improving bait palatability could potentially improve the efficacy of baiting programs to reduce feral cat populations. Our study provides a framework to measure and evaluate the key elements that contribute to efficacy of pest control programs, and to identify opportunities for improving outcomes of future control programs.
Collapse
Affiliation(s)
- Bronwyn A Fancourt
- Pest Animal Research Centre, Department of Agriculture and Fisheries, Biosecurity Queensland, Toowoomba, Queensland, 4350, Australia; School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia; Vertebrate Pest Research Unit, Department of Primary Industries, Armidale, NSW, 2350, Australia.
| | - John Augusteyn
- Ecological Assessment Unit, Queensland Parks and Wildlife Service and Partnerships, Department of Environment and Science, Rockhampton, Queensland, 4701, Australia
| | - Peter Cremasco
- Pest Animal Research Centre, Department of Agriculture and Fisheries, Biosecurity Queensland, Toowoomba, Queensland, 4350, Australia
| | - Barry Nolan
- Technical Support Pest Management, Queensland Parks and Wildlife Service and Partnerships, Department of Environment and Science, 4802, Airlie Beach, Queensland, Australia
| | - Samuel Richards
- Queensland Parks and Wildlife Service and Partnerships, Department of Environment and Science, Rockhampton, Queensland, 4701, Australia
| | - James Speed
- Pest Animal Research Centre, Department of Agriculture and Fisheries, Biosecurity Queensland, Toowoomba, Queensland, 4350, Australia
| | - Cameron Wilson
- Pest Animal Research Centre, Department of Agriculture and Fisheries, Biosecurity Queensland, Toowoomba, Queensland, 4350, Australia
| | - Matthew N Gentle
- Pest Animal Research Centre, Department of Agriculture and Fisheries, Biosecurity Queensland, Toowoomba, Queensland, 4350, Australia
| |
Collapse
|
5
|
Meek PD, Ballard G, Milne H, Croft S, Lawson G, Fleming PJS. Satellite and telecommunication alert system for foot-hold trapping. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr20043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
ContextImproving the welfare outcomes for captured animals is critically important and should underpin ‘best-practice’ trapping. Most Australian States and Territories have regulations and guidelines that form a legal framework for the maximum number of hours an animal can be restrained in a trap. Because servicing all traps within preferred time frames (less than 24h) can be logistically difficult or is considered undesirable for efficacy reasons, some jurisdictions have adopted relatively long trap-checking intervals (up to 72 h).
AimsWe developed and tested the signal transmission and alert efficacy of a foot hold-trap alert system, based on Celium technology, so as to advise trappers of the activation of individual foot-hold traps, even in remote locations.
MethodsWe refined the Celium trap-alert system and designed a below-ground wireless node that transmits a message via satellite or by using the cellular system when a foot-hold trap is sprung. We tested signal transmission and alert efficacy in three locations, with a focus in Australia.
Key resultsTransmission of signals from nodes to hubs and to a smart-phone application were used to resolve interference problems and to identify signal limitations and strengths. During the capture of 34 dingoes, 91% of captures resulted in an alert being received. False negatives were attributed to technical issues with nearby transmitters swamping signals, and software problems that have since been resolved. In 40 captures of dogs and foxes, only one trap-alert transmitter (mole) was uncovered by a target animal and no devices were damaged by animals post-capture.
ConclusionsThis cable-less trap-alert system successfully uses both cellular and satellite networks to transmit messages from desert and coastal locations to trappers, in Australia. We confirmed that this trap-alert system is not detected by target predators in the areas tested and can be effectively used to alert trappers when traps have been sprung.
ImplicationsThis trap-alert system provides a tool to improve welfare outcomes for trapped target and non-target animals through Australia and New Zealand and wherever trapping occurs. It, furthermore, provides a solution to checking traps daily when the distance to and between traps cannot be covered within an appropriate time frame. Although trap alerts can never replace the value of daily trap checking by the trapper, they provide a solution to a management problem, namely, one of accessibility to sites.
Collapse
|
6
|
Doherty TS, Hall ML, Parkhurst B, Westcott V. Experimentally testing the response of feral cats and their prey to poison baiting. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr21008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Lohr CA, Algar D. Managing feral cats through an adaptive framework in an arid landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137631. [PMID: 32325591 DOI: 10.1016/j.scitotenv.2020.137631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
Adaptive management is the systematic acquisition and application of reliable information to improve natural resource management over time. We have employed an adaptive management framework in the control and monitoring of feral cats (Felis catus) on the Matuwa Indigenous Protected Area over the past 16 years. We used 120 Reconyx PC900 camera-traps and a rapid survey technique called the cat track activity index (TAI) to determine if aerial baiting with Eradicat® was more efficient and/or cost-effective than track baiting plus leg-hold trapping. We found that aerial baiting at $0.54 per percent decrease in cat detections is more cost-effective than track-baiting alone at $0.56 per percent decrease in cat detections. Track baiting plus leg-hold trapping, however, is more cost-effective than aerial baiting alone at reducing the number of feral cats detections at $0.39 per percent decrease in cat detections. Aerial baiting plus trapping was the most effective method of suppressing feral cats in an arid landscape with 97.7% reduction in cat detections. Trapping reduced the proportion of the population made up of adult cats from 51.5% to 38.7%, which may influence the efficacy of Eradicat®. Additionally, we found that cats were twice as likely to be detected on spinifex sandplain habitats than stony or hardpan habitats. We make several recommendations for refining feral cat management programs and future research.
Collapse
Affiliation(s)
- Cheryl Anne Lohr
- Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia.
| | - Dave Algar
- Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia
| |
Collapse
|
8
|
Wysong ML, Hradsky BA, Iacona GD, Valentine LE, Morris K, Ritchie EG. Space use and habitat selection of an invasive mesopredator and sympatric, native apex predator. MOVEMENT ECOLOGY 2020; 8:18. [PMID: 32391154 PMCID: PMC7197163 DOI: 10.1186/s40462-020-00203-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Where mesopredators co-exist with dominant apex predators, an understanding of the factors that influence their habitat and space use can provide insights that help guide wildlife conservation and pest management actions. A predator's habitat use is defined by its home range, which is influenced by its selection or avoidance of habitat features and intra- and inter-specific interactions within the landscape. These are driven by both innate and learned behaviour, operating at different spatial scales. We examined the seasonal home ranges and habitat selection of actively-managed populations of a native apex predator (dingo Canis dingo) and invasive mesopredator (feral cat Felis catus) in semi-arid Western Australia to better understanding their sympatric landscape use, potential interactions, and to help guide their management. METHODS We used kernel density estimates to characterise the seasonal space use of dingoes and feral cats, investigate inter- and intra-species variation in their home range extent and composition, and examine second-order habitat selection for each predator. Further, we used discrete choice modelling and step selection functions to examine the difference in third-order habitat selection across several habitat features. RESULTS The seasonal home ranges of dingoes were on average 19.5 times larger than feral cats. Feral cat seasonal home ranges typically included a larger proportion of grasslands than expected relative to availability in the study site, indicating second-order habitat selection for grasslands. In their fine-scale movements (third-order habitat selection), both predators selected for roads, hydrological features (seasonal intermittent streams, seasonal lakes and wetlands), and high vegetation cover. Dingoes also selected strongly for open woodlands, whereas feral cats used open woodlands and grasslands in proportion to availability. MANAGEMENT RECOMMENDATIONS Based on these results, and in order to avoid unintended negative ecological consequences (e.g. mesopredator release) that may stem from non-selective predator management, we recommend that feral cat control focuses on techniques such as trapping and shooting that are specific to feral cats in areas where they overlap with apex predators (dingoes), and more general techniques such as poison baiting where they are segregated.
Collapse
Affiliation(s)
- Michael L. Wysong
- School of Biological Sciences, University of Western Australia, Crawley, Perth, WA 6009 Australia
- Present Address: Nyamba Buru Yawuru, 55 Reid road, Cable Beach, WA 6726 Australia
| | - Bronwyn A. Hradsky
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Gwenllian D. Iacona
- Australian Research Council Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Leonie E. Valentine
- School of Biological Sciences, University of Western Australia, Crawley, Perth, WA 6009 Australia
| | - Keith Morris
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Woodvale, WA 6946 Australia
| | - Euan G. Ritchie
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125 Australia
| |
Collapse
|
9
|
Body Size and Bite Force of Stray and Feral Cats-Are Bigger or Older Cats Taking the Largest or More Difficult-to-Handle Prey? Animals (Basel) 2020; 10:ani10040707. [PMID: 32316555 PMCID: PMC7222765 DOI: 10.3390/ani10040707] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
As carnivorans rely heavily on their head and jaws for prey capture and handling, skull morphology and bite force can therefore reflect their ability to take larger or more difficult-to-handle prey. For 568 feral and stray cats (Felis catus), we recorded their demographics (sex and age), source location (feral or stray) and morphological measures (body mass, body condition); we estimated potential bite force from skull measurements for n = 268 of these cats, and quantified diet composition from stomach contents for n = 358. We compared skull measurements to estimate their bite force and determine how it varied with sex, age, body mass, body condition. Body mass had the strongest influence of bite force. In our sample, males were 36.2% heavier and had 20.0% greater estimated bite force (206.2 ± 44.7 Newtons, n = 168) than females (171.9 ± 29.3 Newtons, n = 120). However, cat age was the strongest predictor of the size of prey that they had taken, with older cats taking larger prey. The predictive power of this relationship was poor though (r2 < 0.038, p < 0.003), because even small cats ate large prey and some of the largest cats ate small prey, such as invertebrates. Cats are opportunistic, generalist carnivores taking a broad range of prey. Their ability to handle larger prey increases as the cats grow, increasing their jaw strength, and improving their hunting skills, but even the smallest cats in our sample had tackled and consumed large and potentially 'dangerous' prey that would likely have put up a defence.
Collapse
|
10
|
Friend JA, Hill R, Macmahon B, Bell L, Button T, Mosen C, Hill S. Are red-tailed phascogales (Phascogale calura) at risk from Eradicat® cat baits? WILDLIFE RESEARCH 2020. [DOI: 10.1071/wr19087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract ContextFeral cats have benefitted from effective control of foxes in south-western Australia and, consequently, their impact on some threatened mammal species has increased. Control of feral cats in the region can be enhanced by use of the Eradicat® cat bait, but its impact on non-target animal populations requires investigation before widespread use. AimsThe aim of the present study was to determine through field trials whether consumption of Eradicat® baits by resident red-tailed phascogales, following a broadscale baiting operation to control feral cats, was sufficiently frequent to cause significant rates of mortality in wild populations of phascogales. MethodsNine radio-tagged red-tailed phascogales were monitored through an Eradicat® baiting event to determine their survival. Removal and consumption of toxic and non-toxic rhodamine B-labelled baits by a range of species were monitored with camera traps and by subsequent trapping of red-tailed phascogales and other mammals to sample whiskers for evidence of rhodamine uptake. Key resultsAlthough some phascogales showed interest in baits and sometimes moved them from the deposition site, all radio-tagged phascogales survived for at least 1 week after baiting, by which time very few or no baits remained. Examination of whiskers sampled from individuals exposed to rhodamine-labelled baits showed that consumption of non-toxic Eradicat® baits by phascogales was negligible; only one phascogale of 62 sampled showed any rhodamine banding. ConclusionsThe present study provided no evidence that red-tailed phascogales in the study region are at risk from an Eradicat® baiting episode in autumn. ImplicationsThe risk to red-tailed phascogale populations through the use of Eradicat® baiting to control cats in their habitat in the Great Southern region of Western Australia is likely to be low. Further research to elucidate any impact of repeated baiting on populations of this species at several locations is recommended.
Collapse
|
11
|
Hohnen R, Murphy BP, Legge SM, Dickman CR, Woinarski JCZ. Uptake of ‘Eradicat’ feral cat baits by non-target species on Kangaroo Island. WILDLIFE RESEARCH 2020. [DOI: 10.1071/wr19056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract ContextPredation by feral cats (Felis catus) threatens a range of vertebrate species across Australia, and cat-free islands increasingly act as safe havens for biodiversity. A feral cat eradication program has begun on Kangaroo Island (4405km2) in South Australia, and poison baiting is likely to be one of the main methods used. Aims Here, we trial a non-toxic version of a cat bait, ‘Eradicat’, on western Kangaroo Island, to examine its potential impact on non-target species. MethodsNon-toxic baits containing the biomarker Rhodamine B were deployed across four sites in early August and late November in 2018, with bait take and consumption assessed both by remote cameras and by the presence of Rhodamine B in mammalian whisker samples taken post-baiting. Key resultsCats encountered baits on very few occasions and took a bait on only one occasion in August (<1% of 576 baits deployed). Non-target species accounted for over 99% of identifiable bait takes. In both seasons, >60% of all baits laid was taken by either the common brushtail possum (Trichosurus vulpecula), bush rat (Rattus fuscipes) or Australian raven (Corvus coronoides). In November, Rosenberg’s goanna (Varanus rosenbergi) and southern brown bandicoot (south-eastern subspecies; Isoodon obesulus obesulus), listed nationally as Endangered, also took baits (3% and 1% respectively). The Kangaroo Island dunnart (Sminthopsis fuliginosus aitkeni), listed nationally as endangered, approached a bait on only one occasion, but did not consume it. Evidence of bait consumption was visible in the whiskers of captured common brushtail possums (100% of post-baiting captured individuals in August, 80% in November), bush rats (59% in August and 50% in November), house mice (Mus musculus) (45% in November) and western pygmy-possums (Cercartetus concinnus) (33% in November). ConclusionsAlthough feral cat baiting has the potential to significantly benefit wildlife on Kangaroo Island, impacts on non-target species (particularly the bush rat and common brushtail possum) may be high. ImplicationsAlternative cat baits, such as those containing a toxin to which native species have a higher tolerance or that are less readily consumed by native wildlife, will be more appropriate.
Collapse
|
12
|
Wysong ML, Iacona GD, Valentine LE, Morris K, Ritchie EG. On the right track: placement of camera traps on roads improves detection of predators and shows non-target impacts of feral cat baiting. WILDLIFE RESEARCH 2020. [DOI: 10.1071/wr19175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
ContextTo understand the ecological consequences of predator management, reliable and accurate methods are needed to survey and detect predators and the species with which they interact. Recently, poison baits have been developed specifically for lethal and broad-scale control of feral cats in Australia. However, the potential non-target effects of these baits on other predators, including native apex predators (dingoes), and, in turn, cascading effects on lower trophic levels (large herbivores), are poorly understood.
AimsWe examined the effect that variation in camera trapping-survey design has on detecting dingoes, feral cats and macropodids, and how different habitat types affect species occurrences. We then examined how a feral cat poison baiting event influences the occupancy of these sympatric species.
MethodsWe deployed 80 remotely triggered camera traps over the 2410-km2 Matuwa Indigenous Protected Area, in the semiarid rangelands of Western Australia, and used single-season site-occupancy models to calculate detection probabilities and occupancy for our target species before and after baiting.
Key resultsCameras placed on roads were ~60 times more likely to detect dingoes and feral cats than were off-road cameras, whereas audio lures designed to attract feral cats had only a slight positive effect on detection for all target species. Habitat was a significant factor affecting the occupancy of dingoes and macropodids, but not feral cats, with both species being positively associated with open woodlands. Poison baiting to control feral cats did not significantly reduce their occupancy but did so for dingoes, whereas macropodid occupancy increased following baiting and reduced dingo occupancy.
ConclusionsCamera traps on roads greatly increase the detection probabilities for predators, whereas audio lures appear to add little or no value to increasing detection for any of the species we targeted. Poison baiting of an invasive mesopredator appeared to negatively affect a non-target, native apex predator, and, in turn, may have resulted in increased activity of large herbivores.
ImplicationsManagement and monitoring of predators must pay careful attention to survey design, and lethal control of invasive mesopredators should be approached cautiously so as to avoid potential unintended negative ecological consequences (apex-predator suppression and herbivore release).
Collapse
|
13
|
Lynn WS, Santiago‐Ávila F, Lindenmayer J, Hadidian J, Wallach A, King BJ. A moral panic over cats. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2019; 33:769-776. [PMID: 31087701 PMCID: PMC6852131 DOI: 10.1111/cobi.13346] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/28/2019] [Accepted: 03/28/2019] [Indexed: 05/15/2023]
Abstract
Some conservationists believe that free-ranging cats pose an enormous risk to biodiversity and public health and therefore should be eliminated from the landscape by any means necessary. They further claim that those who question the science or ethics behind their arguments are science deniers (merchants of doubt) seeking to mislead the public. As much as we share a commitment to conservation of biodiversity and wild nature, we believe these ideas are wrong and fuel an unwarranted moral panic over cats. Those who question the ecological or epidemiological status of cats are not science deniers, and it is a false analogy to compare them with corporate and right-wing special interests that perpetrate disinformation campaigns over issues, such as smoking and climate change. There are good conservation and public-health reasons and evidence to be skeptical that free-ranging cats constitute a disaster for biodiversity and human health in all circumstances. Further, there are significant and largely unaddressed ethical and policy issues (e.g., the ethics and efficacy of lethal management) relative to how people ought to value and coexist with cats and native wildlife. Society is better served by a collaborative approach to produce better scientific and ethical knowledge about free-ranging cats.
Collapse
Affiliation(s)
- William S. Lynn
- George Perkins Marsh InstituteClark University950 Main StreetWorcesterMA01610U.S.A.
| | - Francisco Santiago‐Ávila
- Francisco Santiago‐Ávila, Carnivore Coexistence Lab, Nelson Institute for Environmental StudiesUniversity of Wisconsin‐Madison70 Science Hall, 550 North Park StreetMadisonWI53706U.S.A.
| | - Joann Lindenmayer
- Joann Lindenmayer, Department of Public Health and Community MedicineTufts University School of Medicine145 Harrison AvenueBostonMA02111U.S.A.
| | - John Hadidian
- John Hadidian, Center for Leadership in Global SustainabilityVirginia Polytechnic Institute and State University900 N. Glebe RoadArlingtonVA22208U.S.A.
| | - Arian Wallach
- Arian Wallach, Centre for Compassionate Conservation, Faculty of ScienceUniversity of Technology SydneyUltimoNSW2007Australia
| | - Barbara J. King
- Barbara J. King, Anthropology (emeritus)College of William and MaryP.O. Box 8795WilliamsburgVA23187U.S.A.
| |
Collapse
|
14
|
Doherty TS, Driscoll DA. Coupling movement and landscape ecology for animal conservation in production landscapes. Proc Biol Sci 2019; 285:rspb.2017.2272. [PMID: 29298935 DOI: 10.1098/rspb.2017.2272] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/22/2017] [Indexed: 11/12/2022] Open
Abstract
Habitat conversion in production landscapes is among the greatest threats to biodiversity, not least because it can disrupt animal movement. Using the movement ecology framework, we review animal movement in production landscapes, including areas managed for agriculture and forestry. We consider internal and external drivers of altered animal movement and how this affects navigation and motion capacities and population dynamics. Conventional management approaches in fragmented landscapes focus on promoting connectivity using structural changes in the landscape. However, a movement ecology perspective emphasizes that manipulating the internal motivations or navigation capacity of animals represents untapped opportunities to improve movement and the effectiveness of structural connectivity investments. Integrating movement and landscape ecology opens new opportunities for conservation management in production landscapes.
Collapse
Affiliation(s)
- Tim S Doherty
- Centre for Integrative Ecology (Burwood Campus), School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Don A Driscoll
- Centre for Integrative Ecology (Burwood Campus), School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
15
|
Kreplins TL, Kennedy MS, Dundas SJ, Adams PJ, Bateman PW, Fleming PA. Corvid interference with Canid Pest Ejectors in the southern rangelands of Western Australia. ECOLOGICAL MANAGEMENT & RESTORATION 2018. [DOI: 10.1111/emr.12307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tracey L. Kreplins
- School of Veterinary and Life Science; Murdoch University; 90 South St Murdoch WA 6150 Australia
| | - Malcolm S. Kennedy
- Western Australian Department of Primary Industries and Regional Development; 3 Baron Hay Court South Perth WA 6151 Australia
| | - Shannon J. Dundas
- NSW Department of Primary Industries; 1447 Forest Rd Orange NSW 2800 Australia
| | - Peter J. Adams
- Western Australian Department of Primary Industries and Regional Development; 3 Baron Hay Court South Perth WA 6151 Australia
| | - Philip W. Bateman
- School of Molecular and Life Sciences; Curtin University; Kent St Bentley WA 6102 Australia
| | - Patricia A. Fleming
- School of Veterinary and Life Science; Murdoch University; 90 South St Murdoch WA 6150 Australia
| |
Collapse
|
16
|
Heiniger J, Cameron SF, Gillespie G. Evaluation of risks for two native mammal species from feral cat baiting in monsoonal tropical northern Australia. WILDLIFE RESEARCH 2018. [DOI: 10.1071/wr17171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Feral cats are a significant threat to native wildlife and broad-scale control is required to reduce their impacts. Two toxic baits developed for feral cats, Curiosity® and Hisstory®, have been designed to reduce the risk of baiting to certain non-target species. These baits involve encapsulating the toxin within a hard-shelled delivery vehicle (HSDV) and placing it within a meat attractant. Native animals that chew their food more thoroughly are predicted to avoid poisoning by eating around the HSDV. This prediction has not been tested on wild native mammals in the monsoonal wet–dry tropics of the Northern Territory.
Aim
The aim of this research was to determine whether northern quolls (Dasyurus hallucatus) and northern brown bandicoots (Isoodon macrourus) would take feral cat baits and ingest the HSDV under natural conditions on Groote Eylandt.
Methods
We hand-deployed 120 non-toxic baits with a HSDV that contained a biomarker, Rhodamine B, which stains animal whiskers when ingested. The species responsible for bait removal was determined with camera traps, and HSDV ingestion was measured by evaluating Rhodamine B in whiskers removed from animals trapped after baiting.
Key results
During field trials, 95% of baits were removed within 5 days. Using camera-trap images, we identified the species responsible for taking baits on 65 occasions. All 65 confirmed takes were by native species, with northern quolls taking 42 baits and northern brown bandicoots taking 17. No quolls and only one bandicoot ingested the HSDV.
Conclusion
The use of the HSDV reduces the potential for quolls and bandicoots to ingest a toxin when they consume feral cat baits. However, high bait uptake by non-target species may reduce the efficacy of cat baiting in some areas.
Implications
The present study highlighted that in the monsoonal wet–dry tropics, encapsulated baits are likely to minimise poisoning risk to certain native species that would otherwise eat meat baits. However, further research may be required to evaluate risks to other non-target species. Given the threat to biodiversity from feral cats, we see it as critical to continue testing Hisstory® and Curiosity® in live-baiting trials in northern Australia.
Collapse
|
17
|
Allsop SE, Dundas SJ, Adams PJ, Kreplins TL, Bateman PW, Fleming PA. Reduced efficacy of baiting programs for invasive species: some mechanisms and management implications. ACTA ACUST UNITED AC 2017. [DOI: 10.1071/pc17006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
‘Bait-resistance’ is defined as progressive decreases in bait efficacy in controlled pest species populations. Understanding the mechanisms by which bait-resistance can develop is important for the sustainable control of pests worldwide, for both wildlife conservation programs and agricultural production. Bait-resistance is influenced by both behavioural (innate and learned bait-avoidance behaviour) and physiological aspects of the target pest species (its natural diet, its body mass, the mode of action of the toxin, and the animal’s ability to biochemically break down the toxin). In this review, we summarise the scientific literature, discuss factors that can lead to innate and learned aversion to baits, as well as physiological tolerance. We address the question of whether bait avoidance or tolerance to 1080 could develop in the red fox (Vulpes vulpes), an introduced predator of significant economic and environmental importance in Australia. Sublethal poisoning has been identified as the primary cause of both bait avoidance and increased toxin-tolerance, and so, finally, we provide examples of how management actions can minimise the risk of sublethal baits in pest species populations.
Collapse
|
18
|
Doherty TS, Dickman CR, Johnson CN, Legge SM, Ritchie EG, Woinarski JCZ. Impacts and management of feral catsFelis catusin Australia. Mamm Rev 2016. [DOI: 10.1111/mam.12080] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Tim S. Doherty
- School of Life and Environmental Sciences; Centre for Integrative Ecology (Burwood campus); Deakin University; Geelong Vic. Australia
| | - Chris R. Dickman
- Desert Ecology Research Group; School of Life and Environmental Sciences; University of Sydney; Sydney NSW Australia
| | - Chris N. Johnson
- School of Biological Sciences; University of Tasmania; Hobart Tas. Australia
| | - Sarah M. Legge
- Threatened Species Recovery Hub; National Environmental Science Program; Centre for Biodiversity and Conservation Science; University of Queensland; St Lucia Qld Australia
| | - Euan G. Ritchie
- School of Life and Environmental Sciences; Centre for Integrative Ecology (Burwood campus); Deakin University; Geelong Vic. Australia
| | - John C. Z. Woinarski
- Threatened Species Recovery Hub; National Environmental Science Programme; Charles Darwin University; Casuarina NT Australia
| |
Collapse
|
19
|
Hardman B, Moro D, Calver M. Direct evidence implicates feral cat predation as the primary cause of failure of a mammal reintroduction programme. ECOLOGICAL MANAGEMENT & RESTORATION 2016. [DOI: 10.1111/emr.12210] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|