1
|
Bilateral subthalamic nucleus deep brain stimulation for refractory isolated cervical dystonia. Sci Rep 2022; 12:7678. [PMID: 35538160 PMCID: PMC9090754 DOI: 10.1038/s41598-022-11841-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Subthalamic nucleus (STN) deep brain stimulation (DBS) has been proven to be an alternative target choice for refractory isolated cervical dystonia (CD). However, assessments of its short and long-term safety, efficacy, and sustained effectiveness have been limited to few reports. Here, we evaluated nine consecutive refractory isolated CD patients who underwent bilateral STN DBS and accepted to short and long-term follow-up in this retrospective study. Seven time points were used to see the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) scores (pre-operation [baseline], 1, 3, 6, 12, 24 months post-operation and last follow-up) to assess improvement of dystonic symptoms. The 36-item Short-Form General Health Survey (SF-36) scores obtained at pre-operation and last follow-up to assess the changes in quality of life. All patients tolerated surgery well and acquired observable clinical benefits from STN DBS therapy. All patients achieved a considerable improvement in quality of life at the last follow-up. The hardware-related adverse events can be tolerated and the stimulation-related adverse events can be ameliorated by programming. Our data support the idea that bilateral STN DBS is a safety and effective method for the treatment of refractory isolated CD, with persistent and remarkable improvement in both movement and quality of life.
Collapse
|
2
|
Aubignat M, Lefranc M, Tir M, Krystkowiak P. Deep brain stimulation programming in Parkinson's disease: Introduction of current issues and perspectives. Rev Neurol (Paris) 2020; 176:770-779. [DOI: 10.1016/j.neurol.2020.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/28/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
|
3
|
Kern DS, Fasano A, Thompson JA, Abosch A, Ojemann S, Munhoz RP. Constant Current versus Constant Voltage: Clinical Evidence Supporting a Fundamental Difference in the Modalities. Stereotact Funct Neurosurg 2020; 99:171-175. [PMID: 33227781 DOI: 10.1159/000510803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an effective surgical treatment for movement disorders. Early versions of implantable systems delivered stimulation with constant voltage (CV); however, advances in available and newer platforms have permitted programming in constant current (CC). From a treatment management perspective, there are theoretical advantages of CC stimulation. In this case series, we present clinical evidence supporting the maintenance of current regardless of changes to impedance. MATERIALS AND METHODS This case series included 3 patients with Parkinson's disease status post-bilateral subthalamic nucleus DBS. Patients in this series self-reported intermittent diplopia with pressure applied to the scalp. Patients were subsequently examined and converted from CV to CC and re-examined. Impedances were checked prior to and after conversion from CV to CC as well as while applying pressure to the scalp that induced the adverse effects. RESULTS Across patients, we observed that compression of the scalp overlying the connector, while patients were maintained in CV, consistently and objectively induced unilateral adduction of an eye. In addition, during scalp compression, while in CV, impedance was reduced, which would increase current delivery. Converting the patients to CC stimulation without changing other stimulation parameters eliminated diplopia and objective findings of eye deviation with compression of the scalp overlying the hardware despite changes in impedance. CONCLUSIONS In this case series, we provide clinical support for the principal differences between CV and CC stimulation.
Collapse
Affiliation(s)
- Drew S Kern
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA, .,Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, USA,
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Division of Neurology, Krembil Brain Institute, Center for Advancing Neurotechnological Innovation to Application (CRANIA), University of Toronto, Toronto, Ontario, Canada
| | - John A Thompson
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Steve Ojemann
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Renato P Munhoz
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Division of Neurology, Krembil Brain Institute, Center for Advancing Neurotechnological Innovation to Application (CRANIA), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Wolf ME, Klockziem M, Majewski O, Schulte DM, Krauss JK, Blahak C. Implementation of New Technology in Patients with Chronic Deep Brain Stimulation: Switching from Non-Rechargeable Constant Voltage to Rechargeable Constant Current Stimulation. Stereotact Funct Neurosurg 2020; 97:362-368. [PMID: 31945765 DOI: 10.1159/000505076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Deep brain stimulation (DBS) for movement disorders has been mainly performed with constant voltage (CV) technology. More recently also constant current (CC) systems have been developed which theoretically might have additional advantages. Furthermore, rechargeable (RC) system implantable pulse generators (IPG) are increasingly being used rather than the former solely available non-rechargeable (NRC) IPGs. OBJECTIVE To provide a systematic investigation how to proceed and adapt settings when switching from CV NRC to CC RC technology. METHODS We prospectively collected data from 11 consecutive patients (10 men, mean age at DBS implantation 52.6 ± 14.0 years) with chronic DBS for dystonia (n = 7), Parkinson disease (n = 3), and essential tremor (n = 1) who underwent IPG replacement switching from a CV NRC system (Activa® PC; Medtronic®) to a CC RC system (Vercise® RC; Boston Scientific®). Systematic assessments before and after IPG replacement were performed. RESULTS DBS technology switching at the time of IPG replacement due to battery depletion was at a mean of 108.5 ± 46.2 months of chronic DBS. No perioperative complications occurred. Clinical outcome was stable with overall mild improvements or deteriorations, which could be dealt with in short-term follow-up. Patients were satisfied with the new RC IPG. CONCLUSIONS This study confirms both the safety and feasibility of switching between different DBS technologies (CV to CC, NRC to RC, different manufacturers) in patients with chronic DBS. Furthermore, it shows how the management can be planned using available information from the previous DBS settings. Individual assessment is needed and might partly be related to the DBS target and the underlying disease. MR safety might be a problem with such hybrid systems.
Collapse
Affiliation(s)
- Marc E Wolf
- Department of Neurology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany, .,Department of Neurology, Neurozentrum, Klinikum Stuttgart, Stuttgart, Germany,
| | - Matti Klockziem
- Department of Neurology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Olaf Majewski
- Department of Neurosurgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dirk Michael Schulte
- Department of Neurosurgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Christian Blahak
- Department of Neurology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Neurology, Ortenau Klinikum Lahr-Ettenheim, Lahr, Germany
| |
Collapse
|
5
|
Wojtasiewicz T, Butala A, Anderson WS. Dystonia. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Koeglsperger T, Palleis C, Hell F, Mehrkens JH, Bötzel K. Deep Brain Stimulation Programming for Movement Disorders: Current Concepts and Evidence-Based Strategies. Front Neurol 2019; 10:410. [PMID: 31231293 PMCID: PMC6558426 DOI: 10.3389/fneur.2019.00410] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Deep brain stimulation (DBS) has become the treatment of choice for advanced stages of Parkinson's disease, medically intractable essential tremor, and complicated segmental and generalized dystonia. In addition to accurate electrode placement in the target area, effective programming of DBS devices is considered the most important factor for the individual outcome after DBS. Programming of the implanted pulse generator (IPG) is the only modifiable factor once DBS leads have been implanted and it becomes even more relevant in cases in which the electrodes are located at the border of the intended target structure and when side effects become challenging. At present, adjusting stimulation parameters depends to a large extent on personal experience. Based on a comprehensive literature search, we here summarize previous studies that examined the significance of distinct stimulation strategies for ameliorating disease signs and symptoms. We assess the effect of adjusting the stimulus amplitude (A), frequency (f), and pulse width (pw) on clinical symptoms and examine more recent techniques for modulating neuronal elements by electrical stimulation, such as interleaving (Medtronic®) or directional current steering (Boston Scientific®, Abbott®). We thus provide an evidence-based strategy for achieving the best clinical effect with different disorders and avoiding adverse effects in DBS of the subthalamic nucleus (STN), the ventro-intermedius nucleus (VIM), and the globus pallidus internus (GPi).
Collapse
Affiliation(s)
- Thomas Koeglsperger
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Franz Hell
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jan H Mehrkens
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
7
|
Chen S, Gao G, Feng T, Zhang J. Chinese expert consensus on programming deep brain stimulation for patients with Parkinson's disease. Transl Neurodegener 2018; 7:11. [PMID: 29719720 PMCID: PMC5925823 DOI: 10.1186/s40035-018-0116-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 04/12/2018] [Indexed: 11/18/2022] Open
Abstract
Background Deep Brain Stimulation (DBS) therapy for the treatment of Parkinson’s Disease (PD) is now a well-established option for some patients. Postoperative standardized programming processes can improve the level of postoperative management and programming, relieve symptoms and improve quality of life. Main body In order to improve the quality of the programming, the experts on DBS and PD in neurology and neurosurgery in China reviewed the relevant literatures and combined their own experiences and developed this expert consensus on the programming of deep brain stimulation in patients with PD in China. Conclusion This Chinese expert consensus on postoperative programming can standardize and improve postoperative management and programming of DBS for PD.
Collapse
Affiliation(s)
- Shengdi Chen
- 1Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Guodong Gao
- 2Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xian, 710038 China
| | - Tao Feng
- 3Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 China
| | - Jianguo Zhang
- 4Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 China
| | | | | | | | | | | | | |
Collapse
|
8
|
Parastarfeizabadi M, Kouzani AZ. Advances in closed-loop deep brain stimulation devices. J Neuroeng Rehabil 2017; 14:79. [PMID: 28800738 PMCID: PMC5553781 DOI: 10.1186/s12984-017-0295-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/04/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Millions of patients around the world are affected by neurological and psychiatric disorders. Deep brain stimulation (DBS) is a device-based therapy that could have fewer side-effects and higher efficiencies in drug-resistant patients compared to other therapeutic options such as pharmacological approaches. Thus far, several efforts have been made to incorporate a feedback loop into DBS devices to make them operate in a closed-loop manner. METHODS This paper presents a comprehensive investigation into the existing research-based and commercial closed-loop DBS devices. It describes a brief history of closed-loop DBS techniques, biomarkers and algorithms used for closing the feedback loop, components of the current research-based and commercial closed-loop DBS devices, and advancements and challenges in this field of research. This review also includes a comparison of the closed-loop DBS devices and provides the future directions of this area of research. RESULTS Although we are in the early stages of the closed-loop DBS approach, there have been fruitful efforts in design and development of closed-loop DBS devices. To date, only one commercial closed-loop DBS device has been manufactured. However, this system does not have an intelligent and patient dependent control algorithm. A closed-loop DBS device requires a control algorithm to learn and optimize the stimulation parameters according to the brain clinical state. CONCLUSIONS The promising clinical effects of open-loop DBS have been demonstrated, indicating DBS as a pioneer technology and treatment option to serve neurological patients. However, like other commercial devices, DBS needs to be automated and modernized.
Collapse
Affiliation(s)
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Waurn Ponds, VIC 3216 Australia
| |
Collapse
|
9
|
Shifting from constant-voltage to constant-current in Parkinson's disease patients with chronic stimulation. Neurol Sci 2017; 38:1505-1508. [PMID: 28478496 DOI: 10.1007/s10072-017-2961-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/11/2017] [Indexed: 01/17/2023]
Abstract
The study aimed to evaluate safety and efficacy of shifting stimulation settings from constant-voltage (CV) to constant-current (CC) programming in patients with Parkinson's disease (PD) and chronic subthalamic nucleus deep brain stimulation (STN DBS). Twenty PD patients with chronic STN DBS set in CV programming were shifted to CC and followed for 3 months; the other stimulation settings and the medication regimen remained unchanged. Side effects, motor, non-motor, executive functions, and impedance were assessed at baseline and during follow-up. No adverse events were observed at time of shifting or during CC stimulation. Motor and non-motor measures remained unchanged at follow-up despite impedance decreased. Compared to baseline, inhibition processes improved at follow-up. The shifting strategy was well tolerated and the clinical outcome was maintained with no need to adjust stimulation settings or medications notwithstanding a decrease of impedance. Improvement of inhibition processes is a finding which needed further investigation.
Collapse
|
10
|
Picillo M, Lozano AM, Kou N, Puppi Munhoz R, Fasano A. Programming Deep Brain Stimulation for Parkinson's Disease: The Toronto Western Hospital Algorithms. Brain Stimul 2016; 9:425-437. [DOI: 10.1016/j.brs.2016.02.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/02/2016] [Accepted: 02/03/2016] [Indexed: 12/19/2022] Open
|
11
|
Picillo M, Lozano AM, Kou N, Munhoz RP, Fasano A. Programming Deep Brain Stimulation for Tremor and Dystonia: The Toronto Western Hospital Algorithms. Brain Stimul 2016; 9:438-452. [DOI: 10.1016/j.brs.2016.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/02/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022] Open
|