1
|
Cai L, Xu Z, Luo H, He Q, Diao L, Gui X, Wei L. The association between 5-HT1A binding and temporal lobe epilepsy: A meta-analysis of molecular imaging studies. Epilepsy Behav 2023; 145:109354. [PMID: 37473654 DOI: 10.1016/j.yebeh.2023.109354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Studies have shown conflicting results in the correlation between serotonin-1A (5-HT1A) receptor binding levels in the brain and temporal lobe epilepsy (TLE). There is a need to systematically evaluate the correlation between the 5-HT1A binding level and TLE from the perspective of the brain using molecular imaging. METHODS Chinese and English databases, such as the China National Knowledge Infrastructure (CNKI), the China Science and Technology Journal Database (VIP), WanFang, the Chinese Biomedical Literature Service System (SinoMed), PubMed and Web of Science, were searched. RESULTS Two evaluators independently screened the literature, extracted data, and evaluated the risk of bias in the included studies according to the inclusion and exclusion criteria. RevMan 5.4.1 was used to analyze the data. A total of 196 participants were included; of these, 95 had TLE and 131 were healthy controls who had never had a seizure before participating in the study. Meta-analysis results suggested that 1) decreased 5-HT1A binding was found on the affected side of patients with TLE (standard mean difference (SMD) = -1.45, 95% confidence interval (CI) [-2.27, -0.64], Z = 3.48, P = 0.0005); 2) decreased 5-HT1A binding was found in the ipsilateral hippocampus of patients with TLE (SMD = -1.76, 95% CI [-2.51, -1.00], Z = 4.57, P<0.00001); 3) decreased 5-HT1A binding was found in the ipsilateral temporal lobe cortex of patients with TLE (SMD = -0.46, 95% CI [-0.80, -0.12], Z = 2.66, P = 0.008); 4) decreased 5-HT1A binding was found in the ipsilateral amygdala in patients with TLE (SMD = -1.36, 95% CI [-2.48, -0.23], Z = 2.37, P = 0.02); and 5) decreased 5-HT1A binding was found in the frontal lobe of patients with TLE(SMD = -0.75, 95% CI [-1.29, -0.20], Z = 2.67, P = 0.008). CONCLUSION A reduction in 5-HT1A binding in the hippocampus, temporal cortex, amygdala, and frontal lobe was observed on the affected side of patients with TLE. The decrease in 5-HT1A binding can be considered related to TLE. Potentially relevant factors should be considered in future molecular imaging studies.
Collapse
Affiliation(s)
- Lun Cai
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China.
| | - Zihao Xu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China.
| | - Huazheng Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China.
| | - Qianchao He
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China.
| | - Limei Diao
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China.
| | - Xiongbin Gui
- Department of Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China.
| | - Liping Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China.
| |
Collapse
|
2
|
Cannabidiol inhibits microglia activation and mitigates neuronal damage induced by kainate in an in-vitro seizure model. Neurobiol Dis 2022; 174:105895. [DOI: 10.1016/j.nbd.2022.105895] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
|
3
|
Sourbron J, Lagae L. Serotonin receptors in epilepsy: novel treatment targets? Epilepsia Open 2022; 7:231-246. [PMID: 35075810 PMCID: PMC9159250 DOI: 10.1002/epi4.12580] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the availability of over 30 antiseizure medications (ASMs), there is no “one size fits it all,” so there is a continuing search for novel ASMs. There are divergent data demonstrating that modulation of distinct serotonin (5‐hydroxytryptamine, 5‐HT) receptors subtypes could be beneficial in the treatment of epilepsy and its comorbidities, whereas only a few ASM, such as fenfluramine (FA), act via 5‐HT. There are 14 different 5‐HT receptor subtypes, and most epilepsy studies focus on one or a few of these subtypes, using different animal models and different ligands. We reviewed the available evidence of each 5‐HT receptor subtype using MEDLINE up to July 2021. Our search included medical subject heading (MeSH) and free terms of each “5‐HT subtype” separately and its relation to “epilepsy or seizures.” Most research underlines the antiseizure activity of 5‐HT1A,1D,2A,2C,3 agonism and 5‐HT6 antagonism. Consistently, FA, which has recently been approved for the treatment of seizures in Dravet syndrome, is an agonist of 5‐HT1D,2A,2C receptors. Even though each study focused on a distinct seizure/epilepsy type and generalization of different findings could lead to false interpretations, we believe that the available preclinical and clinical studies emphasize the role of serotonergic modulation, especially stimulation, as a promising avenue in epilepsy treatment.
Collapse
Affiliation(s)
- Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Schönhoff K, von Rüden EL, Koska I, Seiffert I, Potschka H. Hippocampal and Septal 5-HT 1A Receptor Expression in Two Rat Models of Temporal Lobe Epilepsy. Neuroscience 2021; 465:219-230. [PMID: 33836244 DOI: 10.1016/j.neuroscience.2021.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Experimental and clinical data suggest an impact of serotonergic signaling on seizure susceptibility and epilepsy-associated psychiatric comorbidities. Previous µPET studies revealed increased binding of the 5-HT1A receptor ligand [18F]MPPF in two rat models with spontaneous recurrent seizures. These findings raised the question whether these alterations are due to altered 5-HT1A receptor expression or a modification of extracellular serotonin concentrations. 5-HT1A receptor expression rates were quantitatively analyzed in rat brain tissue from an electrical and a chemical post-status epilepticus model. Based on the µPET findings, stereological analysis was focused on hippocampal subregions and the septum. Evaluation of 5-HT1A receptor expression in the electrical post-status epilepticus model revealed a decreased optical density in hippocampal CA3 region. In all other brain regions of interest, the analysis demonstrated comparable 5-HT1A receptor expression rates among all experimental groups in the brain regions evaluated. Moreover, 5-HT1A total receptor volume did not differ between groups. A model-specific correlation was demonstrated between 5-HT1A receptor expression and selected seizure and behavioral parameters. In conclusion, analysis in post-status epilepticus models in rats argued against widespread and pronounced alterations in 5-HT1A receptor expression. In view of previous µPET findings, the present data indicate that alterations in in-vivo receptor binding are due to a reduction in extracellular serotonin concentrations rather than changes in receptor density. Correlation analysis points to a possible link between 5-HT1A receptor expression and ictogenesis, seizure termination and behavioral patterns. However, as these findings proved to be model specific, the relevance needs to be further assessed in future studies focusing on other models and species.
Collapse
Affiliation(s)
- Katharina Schönhoff
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Germany
| | - Isabel Seiffert
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Germany.
| |
Collapse
|
5
|
Petrucci AN, Joyal KG, Purnell BS, Buchanan GF. Serotonin and sudden unexpected death in epilepsy. Exp Neurol 2020; 325:113145. [PMID: 31866464 PMCID: PMC7029792 DOI: 10.1016/j.expneurol.2019.113145] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Epilepsy is a highly prevalent disease characterized by recurrent, spontaneous seizures. Approximately one-third of epilepsy patients will not achieve seizure freedom with medical management and become refractory to conventional treatments. These patients are at greatest risk for sudden unexpected death in epilepsy (SUDEP). The exact etiology of SUDEP is unknown, but a combination of respiratory, cardiac, neuronal electrographic dysfunction, and arousal impairment is thought to underlie SUDEP. Serotonin (5-HT) is involved in regulation of breathing, sleep/wake states, arousal, and seizure modulation and has been implicated in the pathophysiology of SUDEP. This review explores the current state of understanding of the relationship between 5-HT, epilepsy, and respiratory and autonomic control processes relevant to SUDEP in epilepsy patients and in animal models.
Collapse
Affiliation(s)
- Alexandra N Petrucci
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Katelyn G Joyal
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Benton S Purnell
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Department of Neurology, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America.
| |
Collapse
|
6
|
Di Maio R, Colangeli R, Di Giovanni G. WIN 55,212-2 Reverted Pilocarpine-Induced Status Epilepticus Early Changes of the Interaction among 5-HT 2C/NMDA/CB 1 Receptors in the Rat Hippocampus. ACS Chem Neurosci 2019; 10:3296-3306. [PMID: 30912644 DOI: 10.1021/acschemneuro.9b00080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The molecular basis for temporal lobe epileptogenesis remains poorly defined. Recent evidence shows that serotonin 2C receptors (5-HT2CRs), NR2A and NR2B subunit-containing N-methyl-d-aspartate receptors (NMDARs) and cannabinoid 1 receptors (CB1Rs) may be involved in the progression of the epileptic disorders. Moreover, CB1R activation has been reported to modulate the activity of 5-HT2C and NMDA receptors. Here, we treated Sprague-Dawley rats with the pro-convulsant agent pilocarpine (PILO) to induce status epilepticus (SE) in order to study the effect, with regards to receptor signaling and their interactions, of the preactivation of the CB1Rs on early changes that occur 24 h from the initial insult in the hippocampus. Pretreatment with the synthetic CB1/2R agonist WIN 55,212-2 (2 mg/kg, ip) counteracted PILO-induced 5-HT2CR downregulation. Moreover, WIN 55,212-2 uncoupled PILO-induced 5-HT2CR/NR2A and prevented NR2ATyr1325 phosphorylation indirectly since no 5-HT2CR/CB1R interactions were observed. WIN 55,212-2 treatment also prevented PILO-mediated impairment of CB1R/NR2B interactions and NR2B subunit internalization, suggesting a possible role of CB1R in NR2B-containing NMDAR turn over. All the effects observed in animals treated with WIN 55,212-2 were blocked by pretreatment with the selective CB1R antagonist AM251 (1 mg/kg, ip) given 45 min before PILO injection. These results, obtained in vivo in post-PILO-induced SE, provide new insights on the early cellular responses during epileptogenesis and identify new CB1R-mediated mechanisms by which cannabinoids may prevent the development of chronic epilepsy.
Collapse
Affiliation(s)
- Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Roberto Colangeli
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MSD 2080, Malta
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MSD 2080, Malta
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, U.K
| |
Collapse
|
7
|
Schapira AHV. Progress in neurology 2017-2018. Eur J Neurol 2018; 25:1389-1397. [DOI: 10.1111/ene.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. H. V. Schapira
- Department of Clinical and Movement Neurosciences; UCL Queen Square Institute of Neurology; London UK
| |
Collapse
|
8
|
Imaging correlates of behavioral impairments: An experimental PET study in the rat pilocarpine epilepsy model. Neurobiol Dis 2018; 118:9-21. [DOI: 10.1016/j.nbd.2018.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 01/04/2023] Open
|