1
|
Silva BA, Leal MC, Farias MI, Nava A, Galván DI, Fernandez E, Pitossi FJ, Ferrari CC. Proteomic analysis reveals candidate molecules to mediate cortical pathology and identify possible biomarkers in an animal model of multiple sclerosis. Front Immunol 2025; 16:1505459. [PMID: 40018028 PMCID: PMC11864942 DOI: 10.3389/fimmu.2025.1505459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/15/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Multiple Sclerosis (MS) is a complex neurodegenerative disease marked by recurring inflammatory episodes, demyelination, axonal damage, and subsequent loss of function. MS presents a wide range of clinical courses, with the progressive forms leading to irreversible neurological disability. Cortical demyelinating lesions are central to the pathology of these progressive forms, gaining critical importance in recent decades due to their strong correlation with physical disability and cognitive decline. Despite this, the underlying mechanisms driving cortical lesion formation remain poorly understood, and no specific treatments are currently available. A significant challenge lies in the lack of animal models that accurately mirror the key characteristics of these lesions. Methods We developed a focal cortical animal model that replicates many features of cortical lesions, including cognitive impairment. This study focuses on conducting proteomic analyses of both the cortical lesions and cerebrospinal fluid (CSF) from these animals, aiming to identify key proteins and biomarkers that could be validated in MS patients. Results Proteomic differences between frontal cortex tissue and CSF were observed when comparing experimental animals with controls. Among the identified proteins, some have been previously described in MS patients and animal models, while others represent novel discoveries. Notably, we identified two proteins, S100A8 and orosomucoid-1, that were highly expressed in both regions. Conclusions These findings suggest that the prognostic molecules identified in this model could facilitate the discovery of new biomarkers or key molecules relevant to MS, particularly in the cortical lesion that mainly characterized the progressive forms of the disease.
Collapse
Affiliation(s)
- Berenice Anabel Silva
- Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Celeste Leal
- Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Isabel Farias
- Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Agustín Nava
- Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Fundación Huésped, Buenos Aires, Argentina
| | - Daniela Inés Galván
- Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Elmer Fernandez
- ScireLab, Fundación para el Progreso de la Medicina, CONICET, Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Fernando Juan Pitossi
- Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carina Cintia Ferrari
- Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Chea M, Bouvier S, Gris JC. The hemostatic system in chronic brain diseases: A new challenging frontier? Thromb Res 2024; 243:109154. [PMID: 39305718 DOI: 10.1016/j.thromres.2024.109154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Neurological diseases (ND), including neurodegenerative diseases (NDD) and psychiatric disorders (PD), present a significant public health challenge, ranking third in Europe for disability and premature death, following cardiovascular diseases and cancers. In 2017, approximately 540 million cases of ND were reported among Europe's 925 million people, with strokes, dementia, and headaches being most prevalent. Nowadays, more and more evidence highlight the hemostasis critical role in cerebral homeostasis and vascular events. Indeed, hemostasis, thrombosis, and brain abnormalities contributing to ND form a complex and poorly understood equilibrium. Alterations in vascular biology, particularly involving the blood-brain barrier, are implicated in ND, especially dementia, and PD. While the roles of key coagulation players such as thrombin and fibrinogen are established, the roles of other hemostasis components are less clear. Moreover, the involvement of these elements in psychiatric disease pathogenesis is virtually unstudied, except in specific pathological models such as antiphospholipid syndrome. Advanced imaging techniques, primarily functional magnetic resonance imaging and its derivatives like diffusion tensor imaging, have been developed to study brain areas affected by ND and to improve our understanding of the pathophysiology of these diseases. This literature review aims to clarify the current understanding of the connections between hemostasis, thrombosis, and neurological diseases, as well as explore potential future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mathias Chea
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France.
| | - Sylvie Bouvier
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France
| | - Jean-Christophe Gris
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France; I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
3
|
Kodosaki E, Bell R, Sogorb-Esteve A, Wiltshire K, Zetterberg H, Heslegrave A. More than microglia: myeloid cells and biomarkers in neurodegeneration. Front Neurosci 2024; 18:1499458. [PMID: 39544911 PMCID: PMC11560917 DOI: 10.3389/fnins.2024.1499458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
The role of myeloid cells (granulocytes and monocytes) in neurodegeneration and neurodegenerative disorders (NDD) is indisputable. Here we discuss the roles of myeloid cells in neurodegenerative diseases, and the recent advances in biofluid and imaging myeloid biomarker research with a focus on methods that can be used in the clinic. For this review, evidence from three neurodegenerative diseases will be included, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We discuss the potential for these biomarkers to be used in humans with suspected NDD as prognostic, diagnostic, or monitoring tools, identify knowledge gaps in literature, and propose potential approaches to further elucidate the role of myeloid cells in neurodegeneration and better utilize myeloid biomarkers in the understanding and treatment of NDD.
Collapse
Affiliation(s)
- Eleftheria Kodosaki
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Rosie Bell
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at UCL, London, United Kingdom
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Katharine Wiltshire
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong SAR, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| |
Collapse
|
4
|
Lehikoinen J, Strandin T, Parantainen J, Nurmi K, Eklund KK, Rivera FJ, Vaheri A, Tienari PJ. Fibrinolysis associated proteins and lipopolysaccharide bioactivity in plasma and cerebrospinal fluid in multiple sclerosis. J Neuroimmunol 2024; 395:578432. [PMID: 39151321 DOI: 10.1016/j.jneuroim.2024.578432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
The coagulation cascade and fibrinolysis have links with neuroinflammation and increased activation of the coagulation system has been reported in MS patients. We quantified levels of D-dimer, tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and the bioactivity of bacterial lipopolysaccharide (LPS) in cerebrospinal fluid (CSF) and plasma from newly diagnosed untreated MS patients and controls. These molecules showed multiple correlations with each other as well as with age, HLA-DRB1*15:01, body-mass-index and CSF IgG. Our results confirm previous findings of increased plasma PAI-1 and LPS in MS patients compared to controls indicating changes in platelet function and gut permeability in MS.
Collapse
Affiliation(s)
- Joonas Lehikoinen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland; Department of Neurology, Neurocenter, Helsinki University Hospital, Helsinki, Finland.
| | - Tomas Strandin
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Jukka Parantainen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Katariina Nurmi
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Kari K Eklund
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland; Rheumatology, Helsinki University Hospital, Helsinki, Finland
| | - Francisco J Rivera
- Translational Regenerative Neurobiology Group (TReN), Molecular and Integrative Biosciences Research Programme (MIBS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Pentti J Tienari
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland; Department of Neurology, Neurocenter, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
5
|
Koudriavtseva T, Lorenzano S, Cellerino M, Truglio M, Fiorelli M, Lapucci C, D’Agosto G, Conti L, Stefanile A, Zannino S, Filippi MM, Cortese A, Piantadosi C, Maschio M, Maialetti A, Galiè E, Salvetti M, Inglese M. Tissue factor as a potential coagulative/vascular marker in relapsing-remitting multiple sclerosis. Front Immunol 2023; 14:1226616. [PMID: 37583699 PMCID: PMC10424925 DOI: 10.3389/fimmu.2023.1226616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Objectives Recent studies supported coagulation involvement in multiple sclerosis, an inflammatory-demyelinating and degenerative disease of the central nervous system. The main objectives of this observational study were to identify the most specific pro-coagulative/vascular factors for multiple sclerosis pathogenesis and to correlate them with brain hemodynamic abnormalities. Methods We compared i) serum/plasma levels of complement(C)/coagulation/vascular factors, viral/microbiological assays, fat-soluble vitamins and lymphocyte count among people with multiple sclerosis sampled in a clinical remission (n=30; 23F/7M, 40 ± 8.14 years) or a relapse (n=30; 24F/6M, age 41 ± 10.74 years) and age/sex-matched controls (n=30; 23F/7M, 40 ± 8.38 years); ii) brain hemodynamic metrics at dynamic susceptibility contrast-enhanced 3T-MRI during relapse and remission, and iii) laboratory data with MRI perfusion metrics and clinical features of people with multiple sclerosis. Two models by Partial Least Squares Discriminant Analysis were performed using two groups as input: (1) multiple sclerosis vs. controls, and (2) relapsing vs. remitting multiple sclerosis. Results Compared to controls, multiple sclerosis patients had a higher Body-Mass-Index, Protein-C and activated-C9; and a lower activated-C4. Levels of Tissue-Factor, Tie-2 and P-Selectin/CD62P were lower in relapse compared to remission and HC, whereas Angiopoietin-I was higher in relapsing vs. remitting multiple sclerosis. A lower number of total lymphocytes was found in relapsing multiple sclerosis vs. remitting multiple sclerosis and controls. Cerebral-Blood-Volume was lower in normal-appearing white matter and left caudatum while Cerebral-Blood-Flow was inferior in bilateral putamen in relapsing versus remitting multiple sclerosis. The mean-transit-time of gadolinium-enhancing lesions negatively correlated with Tissue-Factor. The top-5 discriminating variables for model (1) were: EBV-EBNA-1 IgG, Body-Mass-Index, Protein-C, activated-C4 and Tissue-Factor whereas for model (2) were: Tissue-Factor, Angiopoietin-I, MCHC, Vitamin A and T-CD3. Conclusion Tissue-factor was one of the top-5 variables in the models discriminating either multiple sclerosis from controls or multiple sclerosis relapse from remission and correlated with mean-transit-time of gadolinium-enhancing lesions. Tissue-factor appears a promising pro-coagulative/vascular biomarker and a possible therapeutic target in relapsing-remitting multiple sclerosis. Clinical trial registration ClinicalTrials.gov, identifier NCT04380220.
Collapse
Affiliation(s)
- Tatiana Koudriavtseva
- Medical Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Svetlana Lorenzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Maria Cellerino
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Mauro Truglio
- Clinical Pathology and Cancer Biobank, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Fiorelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Giovanna D’Agosto
- Clinical Pathology and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gallicano Dermatological Institute, Rome, Italy
| | - Laura Conti
- Clinical Pathology and Cancer Biobank, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Annunziata Stefanile
- Clinical Pathology and Cancer Biobank, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Silvana Zannino
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | | | - Antonio Cortese
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Carlo Piantadosi
- Unità Operativa Complessa (UOC) Neurology, San Giovanni-Addolorata Hospital, Rome, Italy
| | - Marta Maschio
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Andrea Maialetti
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Edvina Galiè
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience Mental Health and Sensory Organs (NEMOS), Sapienza University, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Department of Neurology, Mount Sinai Hospital, New York, NY, United States
| |
Collapse
|
6
|
Abbadessa G, Mainero C, Bonavita S. Hemostasis components as therapeutic targets in autoimmune demyelination. Clin Pharmacol Ther 2022; 111:807-816. [DOI: 10.1002/cpt.2532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/04/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Gianmarco Abbadessa
- Division of Neurology Department of Advanced Medical and Surgical Sciences University of Campania Luigi Vanvitelli 80131 Naples Italy
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital
- Harvard Medical School
| | - Simona Bonavita
- Division of Neurology Department of Advanced Medical and Surgical Sciences University of Campania Luigi Vanvitelli 80131 Naples Italy
| |
Collapse
|
7
|
Shi Z, Zhang M, Dong X, Xu J. Serum Lipoprotein (a) on Postoperative Day 3: A Strong Predictor of Portal and/or Splenic Vein Thrombosis in Cirrhotic Patients With Splenectomy. Clin Appl Thromb Hemost 2021; 26:1076029620912020. [PMID: 32530710 PMCID: PMC7427013 DOI: 10.1177/1076029620912020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Elevated lipoprotein (a) [Lp(a)] is related to the incidence of lower limb deep vein thrombosis and pulmonary embolism. Its role in portal and/or splenic vein thrombosis (PSVT) is not established. A total of 77 consecutive patients who underwent splenectomy for cirrhotic portal hypertension were prospectively studied between 2014 and 2017. The impact of Lp(a) on preoperative day 1 and postoperative days (PODs) 1, 3, 5, 7, and 14 was analyzed. Color Doppler ultrasound examination was performed for the diagnosis of PSVT. The median interval between surgery and postoperative PSVT was 6 days (range: 2-13 days). The levels of Lp(a) were highly increased in patients with PSVT and significant intergroup differences (vs non-PSVT) were found until day 3 and day 5 after operation, respectively. On POD 3, at a threshold of 309.06 mg/L, Lp(a) was a better predictor of PSVT (area under the curve [AUC] = 0.872) compared to the levels on PODs 1, 5, and 7 (AUC = 0.775, 0.796, and 0.791, respectively). The median Lp(a) values peaked at 382.5 mg/L on POD 5 for patients without PSVT. After POD 5, the Lp(a) decreased with values at 347.4 mg/L on POD 7 and 150.7 mg/L on POD 14. For the first time, Lp(a) was shown to be abnormal in patients with PSVT following splenectomy. Monitoring of serum Lp(a) levels on POD 3 might represent a valuable tool to predict early PSVT after splenectomy in cirrhotic patients.
Collapse
Affiliation(s)
- Zhiyong Shi
- Shanxi Medical University, Yingze District, Taiyuan, Shanxi, People's Republic of China.,Department of General Surgery, Shanxi Provincial People's Hospital, Yingze District, Taiyuan, Shanxi, People's Republic of China
| | - Mingxia Zhang
- Department of Laboratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Xiaodian District, Taiyuan, Shanxi, People's Republic of China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Xiaodian District, Taiyuan, Shanxi, People's Republic of China
| | - Jun Xu
- Shanxi Medical University, Yingze District, Taiyuan, Shanxi, People's Republic of China.,Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Xiaodian District, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
8
|
ADAMTS proteases and the tumor immune microenvironment: Lessons from substrates and pathologies. Matrix Biol Plus 2020; 9:100054. [PMID: 33718860 PMCID: PMC7930849 DOI: 10.1016/j.mbplus.2020.100054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
The relationship of ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteases with inflammatory processes was anticipated since their discovery. Although knowledge of these extracellular proteases in different contexts continues to grow, many questions remain unanswered. In this review, we summarize the most important studies of ADAMTSs and their substrates in inflammation and in the immune system of non-oncological disorders. In addition, we update the findings on cancer and highlight their emerging role in the tumor immune microenvironment. Although the overall functions of extracellular molecules are known to be modulated by proteolysis, specific activities attributed to intact proteins and cleaved fragments in the context of inflammation are still subject to debate. A better understanding of ADAMTS activities will help to elucidate their contribution to the immune phenotype and to open up new therapeutic and diagnostic possibilities.
Collapse
|
9
|
Ziliotto N, Zivadinov R, Jakimovski D, Baroni M, Bergsland N, Ramasamy DP, Weinstock-Guttman B, Ramanathan M, Marchetti G, Bernardi F. Relationships Among Circulating Levels of Hemostasis Inhibitors, Chemokines, Adhesion Molecules, and MRI Characteristics in Multiple Sclerosis. Front Neurol 2020; 11:553616. [PMID: 33178104 PMCID: PMC7593335 DOI: 10.3389/fneur.2020.553616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Several studies suggested cross talk among components of hemostasis, inflammation, and immunity pathways in the pathogenesis, neurodegeneration, and occurrence of cerebral microbleeds (CMBs) in multiple sclerosis (MS). Objectives: This study aimed to evaluate the combined contribution of the hemostasis inhibitor protein C (PC) and chemokine C-C motif ligand 18 (CCL18) levels to brain atrophy in MS and to identify disease-relevant correlations among circulating levels of hemostasis inhibitors, chemokines, and adhesion molecules, particularly in CMB occurrence in MS. Methods: Plasma levels of hemostasis inhibitors (ADAMTS13, PC, and PAI1), CCL18, and soluble adhesion molecules (sNCAM, sICAM1, sVCAM1, and sVAP1) were evaluated by multiplex in 138 MS patients [85 relapsing-remitting (RR-MS) and 53 progressive (P-MS)] and 42 healthy individuals (HI) who underwent 3-T MRI exams. Association of protein levels with MRI outcomes was performed by regression analysis. Correlations among protein levels were assessed by partial correlation and Pearson's correlation. Results: In all patients, regression analysis showed that higher PC levels were associated with lower brain volumes, including the brain parenchyma (p = 0.002), gray matter (p < 0.001), cortex (p = 0.001), deep gray matter (p = 0.001), and thalamus (p = 0.001). These associations were detectable in RR-MS but not in P-MS patients. Higher CCL18 levels were associated with higher T2-lesion volumes in all MS patients (p = 0.03) and in the P-MS (p = 0.003). In the P-MS, higher CCL18 levels were also associated with lower volumes of the gray matter (p = 0.024), cortex (p = 0.043), deep gray matter (p = 0.029), and thalamus (p = 0.022). PC-CCL18 and CCL18-PAI1 levels were positively correlated in both MS and HI, PC–sVAP1 and PAI1–sVCAM1 only in MS, and PC–sICAM1 and PC–sNCAM only in HI. In MS patients with CMBs (n = 12), CCL18–PAI1 and PAI1–sVCAM1 levels were better correlated than those in MS patients without CMBs, and a novel ADAMTS13–sVAP1 level correlation (r = 0.78, p = 0.003) was observed. Conclusions: Differences between clinical phenotype groups in association of PC and CCL18 circulating levels with MRI outcomes might be related to different aspects of neurodegeneration. Disease-related pathway dysregulation is supported by several protein level correlation differences between MS patients and HI. The integrated analysis of plasma proteins and MRI measures provide evidence for new relationships among hemostasis, inflammation, and immunity pathways, relevant for MS and for the occurrence of CMBs.
Collapse
Affiliation(s)
- Nicole Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York, Buffalo, NY, United States.,Center for Biomedical Imaging at the Clinical Translational Science Institute, State University of New York, Buffalo, NY, United States
| | - Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York, Buffalo, NY, United States
| | - Marcello Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York, Buffalo, NY, United States.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Deepa P Ramasamy
- Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York, Buffalo, NY, United States
| | - Bianca Weinstock-Guttman
- Center for Biomedical Imaging at the Clinical Translational Science Institute, State University of New York, Buffalo, NY, United States
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, United States
| | - Giovanna Marchetti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Solmaz I, Kocak E, Kaplan O, Celebier M, Anlar B. Analysis of plasma protein biomarkers in childhood onset multiple sclerosis. J Neuroimmunol 2020; 348:577359. [DOI: 10.1016/j.jneuroim.2020.577359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
|
11
|
Functional recovery in multiple sclerosis patients undergoing rehabilitation programs is associated with plasma levels of hemostasis inhibitors. Mult Scler Relat Disord 2020; 44:102319. [DOI: 10.1016/j.msard.2020.102319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 11/19/2022]
|
12
|
Metformin as a Potential Agent in the Treatment of Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21175957. [PMID: 32825027 PMCID: PMC7503488 DOI: 10.3390/ijms21175957] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Metformin, a synthetic derivative of guanidine, is commonly used as an oral antidiabetic agent and is considered a multi-vector application agent in the treatment of other inflammatory diseases. Recent studies have confirmed the beneficial effect of metformin on immune cells, with special emphasis on immunological mechanisms. Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by various clinical courses. Although the pathophysiology of MS remains unknown, it is most likely a combination of disturbances of the immune system and biochemical pathways with a disruption of blood-brain barrier (BBB), and it is strictly related to injury of intracerebral blood vessels. Metformin has properties which are greatly desirable for MS therapy, including antioxidant, anti-inflammatory or antiplatelet functions. The latest reports relating to the cardiovascular disease confirm an increased risk of ischemic events in MS patients, which are directly associated with a coagulation cascade and an elevated pro-thrombotic platelet function. Hence, this review examines the potential favourable effects of metformin in the course of MS, its role in preventing inflammation and endothelial dysfunction, as well as its potential antiplatelet role.
Collapse
|
13
|
Expression profiles of the internal jugular and saphenous veins: Focus on hemostasis genes. Thromb Res 2020; 191:113-124. [PMID: 32438216 DOI: 10.1016/j.thromres.2020.04.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/15/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Venous bed specificity could contribute to differential vulnerability to thrombus formation, and is potentially reflected in mRNA profiles. MATERIALS AND METHODS Microarray-based transcriptome analysis in wall and valve specimens from internal jugular (IJV) and saphenous (SV) veins collected during IJV surgical reconstruction in patients with impaired brain outflow. Multiplex antigenic assay in paired jugular and peripheral plasma samples. RESULTS Most of the top differentially expressed transcripts have been previously associated with both vascular and neurological disorders. Large expression differences of HOX genes, organ patterning regulators, pinpointed the vein positional identity. The "complement and coagulation cascade" emerged among enriched pathways. In IJV, upregulation of genes for coagulation inhibitors (TFPI, PROS1), activated protein C pathway receptors (THBD, PROCR), fibrinolysis activators (PLAT, PLAUR), and downregulation of the fibrinolysis inhibitor (SERPINE1) and of contact/amplification pathway genes (F11, F12), would be compatible with a thromboprotective profile in respect to SV. Further, in SV valve the prothrombinase complex genes (F5, F2) were up-regulated and the VWF showed the highest expression. Differential expression of several VWF regulators (ABO, ST3GAL4, SCARA5, CLEC4M) was also observed. Among other differentially expressed hemostasis-related genes, heparanase (HPSE)/heparanase inhibitor (HPSE2) were up-/down-regulated in IJV, which might support procoagulant features and disease conditions. The jugular plasma levels of several proteins, encoded by differentially expressed genes, were lower and highly correlated with peripheral levels. CONCLUSIONS The IJV and SV rely on differential expression of many hemostasis and hemostasis-related genes to balance local hemostasis, potentially related to differences in vulnerability to thrombosis.
Collapse
|
14
|
Aptamer-modified FXa generation assays to investigate hypercoagulability in plasma from patients with ischemic heart disease. Thromb Res 2020; 189:140-146. [PMID: 32224381 DOI: 10.1016/j.thromres.2020.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/29/2020] [Accepted: 03/09/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND High plasma levels of activated Factor VII-Antithrombin complex (FVIIa-AT) have been associated with an increased risk of cardiovascular mortality in patients with stable coronary artery disease (CAD). OBJECTIVES To investigate if FVIIa-AT levels are associated with activated factor X generation (FXaG) in modified assays. PATIENTS/METHODS Forty CAD patients were characterized for FVIIa-AT levels by ELISA and for FXaG in plasma. Novel fluorogenic FXaG assays, based on aptamers inhibiting thrombin and/or tissue factor pathway inhibitor (TFPI), were set up. RESULTS FXaG correlated with FVIIa-AT levels (RAUC = 0.393, P = 0.012). The combination of thrombin inhibition and FXaG potentiation by using anti-thrombin and anti-TFPI aptamers, respectively, favors the study of time parameters. The progressive decrease in lag time from the lowest to the highest FVIIa-AT quartile was magnified by combining TFPI and thrombin inhibitory aptamers, thus supporting increased FXaG activity in the coagulation initiation phase. By exploring FXaG rates across FVIIa-AT quartiles, the largest relative differences were detectable at the early times (the highest versus the lowest quartile; 5.0-fold, P = 0.005 at 45 s; 3.5-fold, P = 0.001 at 55 s), and progressively decreased over time (2.3-fold, P = 0.002 at 75 s; 1.8-fold, P = 0.008 at 95 s; 1.6-fold, P = 0.022 at 115 s). Association between high FVIIa-AT levels and increased FXaG was independent of F7 -323 A1/A2 polymorphism influencing FVIIa-AT levels. CONCLUSIONS High FVIIa-AT plasma levels were associated with increased FXaG. Hypercoagulability features were specifically detectable in the coagulation initiation phase, which may have implications for cardiovascular risk prediction by either FVIIa-AT complex measurement or modified FXaG assays.
Collapse
|
15
|
Lu K, Liu L, Xu X, Zhao F, Deng J, Tang X, Wang X, Zhao BQ, Zhang X, Zhao Y. ADAMTS13 ameliorates inflammatory responses in experimental autoimmune encephalomyelitis. J Neuroinflammation 2020; 17:67. [PMID: 32075652 PMCID: PMC7029584 DOI: 10.1186/s12974-020-1713-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ADAMTS13 (a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13) plays a vital role in preventing microvascular thrombosis and inflammation. Reduced ADAMTS13 levels in plasma have been detected in multiple sclerosis (MS) patients. In the present study, we have determined the role of ADAMTS13 in the disease progression of MS using a mouse model of experimental autoimmune encephalomyelitis (EAE). METHODS Female C57BL/6 mice were immunized with MOG35-55 peptide and then treated with ADAMTS13 or vehicle in preventive and therapeutic settings. Mice were analyzed for clinical deficit, white matter demyelination and inflammatory cell infiltration. To explore the underlying mechanism, VWF expression and blood-spinal cord barriers (BSCB) were determined. RESULTS Plasma ADAMTS13 activity was suppressed in EAE mice. ADAMTS13-treated EAE mice exhibited an ameliorated disease course, reduced demyelination, and decreased T lymphocyte, neutrophil and monocyte infiltration into the spinal cord. Consistently, ADAMTS13 treatment reduced VWF levels and inhibited BSCB breakdown in the spinal cords of EAE mice. However, leukocytes in the blood and spleen of EAE mice remained unaffected by ADAMTS13 administration. CONCLUSION Our results demonstrate that ADAMTS13 treatment ameliorates inflammatory responses, demyelination and disease course in EAE mice. Therefore, our study suggests that ADAMTS13 may represent a potential therapeutic strategy for MS patients.
Collapse
Affiliation(s)
- Kaili Lu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China
| | - Lan Liu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China
| | - Xiaofeng Xu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China
| | - Fei Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China
| | - Jiangshan Deng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China
| | - Xin Tang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China
| | - Bing-Qiao Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China.
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, China.
| |
Collapse
|
16
|
de Falco A, De Simone M, d'Onofrio F, Spitaleri D, de Falco FA. Treating acute ischemic stroke in a patient with multiple sclerosis: A challenging issue. Mult Scler Relat Disord 2020; 40:101962. [PMID: 32014810 DOI: 10.1016/j.msard.2020.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
Abstract
Multiple sclerosis (MS) is a chronic disease characterized by inflammation, demyelination and neurodegeneration in the central nervous system. Recent studies suggested that patients with MS might have a greater risk of ischaemic stroke (IS). IS treatment with intravenous alteplase (IVA) in MS has rarely been reported. This could be due to the challenging diagnosis between acute IS and MS relapse, considering that clinical and neuroradiological findings might overlap. Here we report a 47-year-old man with a 6-year history of relapsing-remitting MS who presented to the emergency room for acute left limbs weakness and hypoesthesia diagnosed as ischemic stroke after advanced MRI imaging. Patient was treated with IVA and treatment was complicated by a parenchymal hematoma (PH) despite low risks due to young age, low NIHSS score, small ischemic lesion and absence of multiple vascular risk factors. We discuss the possible relationship between MS and IS and the use of IVA in MS patients and finally we consider the possible causes of the PH including the MS disease-modifying therapies.
Collapse
Affiliation(s)
- Arturo de Falco
- Neurology and Stroke Unit, Azienda Ospedaliera San G. Moscati, Contrada Amoretta, Avellino 83100, Italy.
| | - Marta De Simone
- Neuroradiology Unit, Azienda Ospedaliera San G. Moscati, Contrada Amoretta, Avellino 83100, Italy
| | - Florindo d'Onofrio
- Neurology and Stroke Unit, Azienda Ospedaliera San G. Moscati, Contrada Amoretta, Avellino 83100, Italy
| | - Daniele Spitaleri
- Neurology and Stroke Unit, Azienda Ospedaliera San G. Moscati, Contrada Amoretta, Avellino 83100, Italy
| | | |
Collapse
|
17
|
Ziliotto N, Zivadinov R, Baroni M, Marchetti G, Jakimovski D, Bergsland N, Ramasamy DP, Weinstock-Guttman B, Straudi S, Manfredini F, Ramanathan M, Bernardi F. Plasma levels of protein C pathway proteins and brain magnetic resonance imaging volumes in multiple sclerosis. Eur J Neurol 2019; 27:235-243. [PMID: 31408242 DOI: 10.1111/ene.14058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE The involvement of protein C (PC) pathway components in multiple sclerosis (MS) has scarcely been explored. The aim was to investigate their levels in relation to clinical and neurodegenerative magnetic resonance imaging (MRI) outcomes in patients. METHODS In all, 138 MS patients and 42 healthy individuals were studied. PC, protein S (PS) and soluble endothelial protein C receptor (sEPCR) were evaluated by multiplex assays and enzyme-linked immunosorbent assay. Regression analyses between 3 T MRI outcomes and PC pathway components were performed. ancova was used to compare MRI volumes based on protein level quartiles. Partial correlation was assessed amongst levels of PC pathway components and hemostasis protein levels, including soluble thrombomodulin (sTM), heparin cofactor II (HCII), plasminogen activator inhibitor 1 (PAI-1) and factor XII (FXII). The variation of PC concentration across four time points was evaluated in 32 additional MS patients. RESULTS There was an association between PC concentration, mainly reflecting the zymogen PC, and MRI measures for volumes of total gray matter (GM) (P = 0.003), thalamus (P = 0.007), cortex (P = 0.008), deep GM (P = 0.009) and whole brain (P = 0.026). Patients in the highest PC level quartile were characterized by the lowest GM volumes. Correlations of PC-HCII, PC-FXII and sEPCR-sTM values were detectable in MS patients, whilst PC-PS and PS-PAI-1 correlations were present in healthy individuals only. CONCLUSIONS Protein C plasma concentrations might be associated with neurodegenerative MRI outcomes in MS. Several differences in correlation amongst protein plasma levels suggest dysregulation of PC pathway components in MS patients. The stability of PC concentration over time supports a PC investigation in relation to GM atrophy in MS.
Collapse
Affiliation(s)
- N Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - R Zivadinov
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA.,Neurology, State University of New York, Buffalo, NY, USA
| | - M Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - G Marchetti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - D Jakimovski
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - N Bergsland
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - D P Ramasamy
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | | | - S Straudi
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | - F Manfredini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - M Ramanathan
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, USA
| | - F Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
18
|
Jakimovski D, Zivadinov R, Pelizzari L, Browne R, Weinstock-Guttman B, Ramanathan M. Lipoprotein(a) Levels Are Associated with the Size of Extracranial Arteries in Multiple Sclerosis. J Vasc Res 2019; 57:16-23. [DOI: 10.1159/000502115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/15/2019] [Indexed: 11/19/2022] Open
|
19
|
Ziliotto N, Bernardi F, Jakimovski D, Zivadinov R. Coagulation Pathways in Neurological Diseases: Multiple Sclerosis. Front Neurol 2019; 10:409. [PMID: 31068896 PMCID: PMC6491577 DOI: 10.3389/fneur.2019.00409] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
Significant progress has been made in understanding the complex interactions between the coagulation system and inflammation and autoimmunity. Increased blood-brain-barrier (BBB) permeability, a key event in the pathophysiology of multiple sclerosis (MS), leads to the irruption into the central nervous system of blood components that include virtually all coagulation/hemostasis factors. Besides their cytotoxic deposition and role as a possible trigger of the coagulation cascade, hemostasis components cause inflammatory response and immune activation, sustaining neurodegenerative events in MS. Early studies showing the contribution of altered hemostasis in the complex pathophysiology of MS have been strengthened by recent studies using methodologies that permitted deeper investigation. Fibrin(ogen), an abundant protein in plasma, has been identified as a key contributor to neuroinflammation. Perturbed fibrinolysis was found to be a hallmark of progressive MS with abundant cortical fibrin(ogen) deposition. The immune-modulatory function of the intrinsic coagulation pathway still remains to be elucidated in MS. New molecular details in key hemostasis components participating in MS pathophysiology, and particularly involved in inflammatory and immune responses, could favor the development of novel therapeutic targets to ameliorate the evolution of MS. This review article introduces essential information on coagulation factors, inhibitors, and the fibrinolytic pathway, and highlights key aspects of their involvement in the immune system and inflammatory response. It discusses how hemostasis components are (dys)regulated in MS, and summarizes histopathological post-mortem human brain evidence, as well as cerebrospinal fluid, plasma, and serum studies of hemostasis and fibrinolytic pathways in MS. Studies of disease-modifying treatments as potential modifiers of coagulation factor levels, and case reports of autoimmunity affecting hemostasis in MS are also discussed.
Collapse
Affiliation(s)
- Nicole Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dejan Jakimovski
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Robert Zivadinov
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo, NY, United States.,Clinical Translational Science Institute, Center for Biomedical Imaging, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
20
|
Jakimovski D, Weinstock-Guttman B, Gandhi S, Guan Y, Hagemeier J, Ramasamy DP, Fuchs TA, Browne RW, Bergsland N, Dwyer MG, Ramanathan M, Zivadinov R. Dietary and lifestyle factors in multiple sclerosis progression: results from a 5-year longitudinal MRI study. J Neurol 2019; 266:866-875. [PMID: 30758665 DOI: 10.1007/s00415-019-09208-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Evidence regarding the role, if any, of dietary and lifestyle factors in the pathogenesis of multiple sclerosis (MS) is poorly understood. OBJECTIVE To assess the effect of lifestyle-based risk factors linked to cardiovascular disease (CVD) on clinical and MRI-derived MS outcomes. METHODS The study enrolled 175 MS or clinically isolated syndrome (CIS) patients and 42 age- and sex-matched healthy controls (HCs) who were longitudinally followed for 5.5 years. The 20-year CVD risk was calculated by Healthy Heart Score (HHS) prediction model which includes age, smoking, body mass index, dietary intake, exercise, and alcohol consumption. Baseline and follow-up MRI scans were obtained and cross-sectional and longitudinal changes of T2-lesion volume (LV), whole brain volume (WBV), white matter volume (WMV), gray matter volume (GMV), and lateral ventricular volume (LVV) were calculated. RESULTS After correcting for disease duration, the baseline HHS values of the MS group were associated with baseline GMV (rs = - 0.20, p = 0.01), and longitudinal LVV change (rs = 0.19, p = 0.01). The association with LVV remained significant after adjusting for baseline LVV volumes (rs = 0.2, p = 0.008) in MS patients. The diet component of the HHS was associated with the 5-year T2-LV accrual (rs = - 0.191, p = 0.04) in MS. In the HC group, the HHS was associated with LVV (rs = 0.58, p < 0.001), GMV (rs = - 0.57, p < 0.001), WBV (rs = - 0.55, p = 0.001), T2-LV (rs = 0.41, p = 0.027), and WMV (rs = - 0.38, p = 0.042). Additionally, the HC HHS was associated with the 5-year change in LVV (rs = 0.54, p = 0.001) and in WBV (rs = - 0.45, p = 0.011). CONCLUSION Lifestyle risk factors contribute to accelerated central brain atrophy in MS patients, whereas unhealthier diet is associated with MS lesion accrual. Despite the lower overall effect when compared to HCs, lifestyle-based modifications may still provide a beneficial effect on reducing brain atrophy in MS patients.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Multiple Sclerosis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Sirin Gandhi
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Yi Guan
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Jesper Hagemeier
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Deepa P Ramasamy
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Tom A Fuchs
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA.
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
21
|
Plasma levels of soluble NCAM in multiple sclerosis. J Neurol Sci 2019; 396:36-41. [DOI: 10.1016/j.jns.2018.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/24/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022]
|
22
|
Increased CCL18 plasma levels are associated with neurodegenerative MRI outcomes in multiple sclerosis patients. Mult Scler Relat Disord 2018; 25:37-42. [PMID: 30031282 DOI: 10.1016/j.msard.2018.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Chemokine ligands and co-stimulatory factors are involved in macrophage activation and differentiation processes that could contribute to multiple sclerosis (MS) pathogenesis. OBJECTIVE To investigate associations of C-C motif Ligand 18 (CCL18), C-C motif ligand 5 (CCL5) and soluble Cluster of Differentiation 86 (sCD86) with clinical and MRI measures in MS patients. METHODS Plasma levels of CCL18, CCL5 and sCD86 were evaluated in 138 MS patients (85 relapsing-remitting, RR-MS; 53 progressive, P-MS), and in 42 age- and sex-matched healthy individuals (HI). All subjects underwent standardized 3T MRI and clinical examinations. Multiple regression analysis of MRI outcomes as dependent variables was performed with age, gender, having P-MS, and plasma proteins as predictor variables. RESULTS Higher CCL18 plasma levels were found in P-MS (median = 51.5, IQR = 41.0-63.6 ng/mL) compared to RR-MS (median = 43.0, IQR = 29.1-55.0 ng/mL, p = 0.014) and to HI (median = 41.3, IQR = 30.9-54.1 ng/mL, p = 0.009). Disease-modifying treatments altered CCL5 (p = 0.036) and sCD86 (p < 0.001) levels. Higher CCL18 levels were associated with increased lateral ventricular volume (p = 0.006) and T2 lesion volume (LV) (p = 0.034), and decreased grey matter (p = 0.006), thalamic (p = 0.007) and cortical (p = 0.01) volumes. CONCLUSIONS Our results provide evidence that higher CCL18 plasma levels are associated with more severe inflammatory and neurodegenerative brain MRI outcomes in MS.
Collapse
|