1
|
Tanaka F, Maeda M, Kishi S, Kogue R, Umino M, Ishikawa H, Ii Y, Shindo A, Sakuma H. Updated imaging markers in cerebral amyloid angiopathy: What radiologists need to know. Jpn J Radiol 2024:10.1007/s11604-024-01720-2. [PMID: 39730931 DOI: 10.1007/s11604-024-01720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is an age-related small vessel disease pathologically characterized by the progressive accumulation of amyloid-beta (Aβ) peptide in cerebrovascular walls, affecting both cortical and leptomeningeal vessels. Amyloid deposition results in fragile vessels, which may lead to lobar intracerebral hemorrhage (ICH) and cognitive impairment. To evaluate the probability and severity of CAA, the imaging markers depicted on CT and MRI techniques are crucial, as brain pathological examination is highly invasive. Although the Boston criteria have established diagnostic value and have been updated to version 2.0, due to an aging population, the patients with CAA should also be assessed for their risk of future ICH or cognitive impairment. Furthermore, an increased awareness of CAA is essential when introducing anticoagulants for infarct in elderly patients or anti-amyloid antibodies for Alzheimer's disease, as these may worsen CAA-related hemorrhagic lesions. However, the radiological literature on CAA has not been comprehensively updated. Here, we review the imaging markers of CAA and clinical significance. We also discuss the clinical and imaging characteristics of CAA-related inflammation, amyloid-related imaging abnormalities, and iatrogenic-CAA.
Collapse
Affiliation(s)
- Fumine Tanaka
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Seiya Kishi
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryota Kogue
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Maki Umino
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yuichiro Ii
- Department of Neuroimaging and Pathophysiology, Mie University School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
2
|
Howe MD, Caruso MR, Manoochehri M, Kunicki ZJ, Emrani S, Rudolph JL, Huey ED, Salloway SP, Oh H. Utility of cerebrovascular imaging biomarkers to detect cerebral amyloidosis. Alzheimers Dement 2024; 20:7220-7231. [PMID: 39219209 PMCID: PMC11485066 DOI: 10.1002/alz.14207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION The relationship between cerebrovascular disease (CVD) and amyloid beta (Aβ) in Alzheimer's disease (AD) is understudied. We hypothesized that magnetic resonance imaging (MRI)-based CVD biomarkers-including cerebral microbleeds (CMBs), lacunar infarction, and white matter hyperintensities (WMHs)-would correlate with Aβ positivity on positron emission tomography (Aβ-PET). METHODS We cross-sectionally analyzed data from the Alzheimer's Disease Neuroimaging Initiative (ADNI, N = 1352). Logistic regression was used to calculate odds ratios (ORs), with Aβ-PET positivity as the standard-of-truth. RESULTS Following adjustment, WMHs (OR = 1.25) and superficial CMBs (OR = 1.45) remained positively associated with Aβ-PET positivity (p < 0.001). Deep CMBs and lacunes exhibited a varied relationship with Aβ-PET in cognitive subgroups. The combined diagnostic model, which included CVD biomarkers and other accessible measures, significantly predicted Aβ-PET (pseudo-R2 = 0.41). DISCUSSION The study highlights the translational value of CVD biomarkers in diagnosing AD, and underscores the need for more research on their inclusion in diagnostic criteria. CLINICALTRIALS gov: ADNI-2 (NCT01231971), ADNI-3 (NCT02854033). HIGHLIGHTS Cerebrovascular biomarkers linked to amyloid beta (Aβ) in Alzheimer's disease (AD). White matter hyperintensities and cerebral microbleeds reliably predict Aβ-PET positivity. Relationships with Aβ-PET vary by cognitive stage. Novel accessible model predicts Aβ-PET status. Study supports multimodal diagnostic approaches.
Collapse
Affiliation(s)
- Matthew D. Howe
- Butler Hospital Memory & Aging ProgramProvidenceRhode IslandUSA
- Department of Psychiatry and Human BehaviorBrown UniversityProvidenceRhode IslandUSA
| | - Megan R. Caruso
- Butler Hospital Memory & Aging ProgramProvidenceRhode IslandUSA
| | | | - Zachary J. Kunicki
- Department of Psychiatry and Human BehaviorBrown UniversityProvidenceRhode IslandUSA
| | - Sheina Emrani
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - James L. Rudolph
- Center of Innovation in Long‐Term Services and Supports, Providence VA Medical CenterProvidenceRhode IslandUSA
- Department of MedicineThe Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Edward D. Huey
- Butler Hospital Memory & Aging ProgramProvidenceRhode IslandUSA
- Department of Psychiatry and Human BehaviorBrown UniversityProvidenceRhode IslandUSA
| | - Stephen P. Salloway
- Butler Hospital Memory & Aging ProgramProvidenceRhode IslandUSA
- Department of Psychiatry and Human BehaviorBrown UniversityProvidenceRhode IslandUSA
| | - Hwamee Oh
- Department of Psychiatry and Human BehaviorBrown UniversityProvidenceRhode IslandUSA
| | | |
Collapse
|
3
|
Ii Y, Ishikawa H, Nishigaki A, Utsunomiya T, Nakamura N, Hirata Y, Matsuyama H, Kajikawa H, Matsuura K, Matsuda K, Shinohara M, Kishi S, Kogue R, Umino M, Maeda M, Tomimoto H, Shindo A. Superficial small cerebellar infarcts in cerebral amyloid angiopathy on 3 T MRI: A preliminary study. J Neurol Sci 2024; 459:122975. [PMID: 38527411 DOI: 10.1016/j.jns.2024.122975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Strictly superficial cerebellar microbleeds and cerebellar superficial siderosis have been considered markers of advanced cerebral amyloid angiopathy (CAA), but there are few studies on cerebellar ischemic lesions in CAA. We investigated the presence of superficial small cerebellar infarct (SCI) ≤15 mm and its relation to magnetic resonance imaging (MRI) markers in patients with probable CAA. METHODS Eighty patients with probable CAA were retrospectively evaluated. The presence of superficial SCIs was examined, along with cerebellar microbleeds and cerebellar superficial siderosis, using 3-T MRI. Lobar cerebral microbleeds, cortical superficial siderosis (cSS), enlargement of the perivascular space in the centrum semiovale, and white matter hyperintensity were assessed and the total CAA-small vessel disease (SVD) score was calculated. RESULTS Nine of the 80 patients (11.3%) had a total of 16 superficial SCIs. By tentatively defining SCI <4 mm as cerebellar microinfarcts, 8 out of 16 (50%) superficial SCIs corresponded to cerebellar microinfarcts. The total CAA-SVD score was significantly higher in patients with superficial SCIs (p = 0.01). The prevalence of cSS (p = 0.018), cortical cerebral microinfarct (p = 0.034), and superficial cerebellar microbleeds (p = 0.006) was significantly higher in patients with superficial SCIs. The number of superficial cerebellar microbleeds was also significantly higher in patients with superficial SCIs (p = 0.001). CONCLUSIONS Our results suggest that in patients with CAA, superficial SCIs (including microinfarcts) on MRI may indicate more severe, advanced-stage CAA. These preliminary findings should be verified by larger prospective studies in the future.
Collapse
Affiliation(s)
- Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Neuroimaging and Pathophysiology, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Akisato Nishigaki
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Takaya Utsunomiya
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Naoko Nakamura
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yoshinori Hirata
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hirofumi Matsuyama
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hiroyuki Kajikawa
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Keita Matsuura
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Kana Matsuda
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masaki Shinohara
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Seiya Kishi
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Ryota Kogue
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Maki Umino
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| |
Collapse
|
4
|
Liu YT, Lei CY, Zhong LM. Research Advancements on the Correlation Between Spontaneous Intracerebral Hemorrhage of Different Etiologies and Imaging Markers of Cerebral Small Vessel Disease. Neuropsychiatr Dis Treat 2024; 20:307-316. [PMID: 38405425 PMCID: PMC10893791 DOI: 10.2147/ndt.s442334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Objective The purpose of this review is to identify the correlation between ICH and CSVD imaging markers under SMASH-U classification by searching and analyzing a large number of literatures in recent years, laying a theoretical foundation for future clinical research. At the same time, by collecting clinical data to evaluate patient prognosis, analyzing whether there are differences or supplements between clinical trial conclusions and previous theories, and ultimately guiding clinical diagnosis and treatment through the analysis of imaging biomarkers. Methods In this review, by searching CNKI, Web of Science, PubMed, FMRS and other databases, the use of "spontaneous intracerebral hemorrhage", "hypertensive hemorrhagic cerebral small vessel disease", "cerebral small vessel disease imaging", "Based cerebral small vessel diseases", "SMASH the -u classification" and their Chinese equivalents for the main search term. We focused on reading and analyzing hundreds of relevant literatures in the last decade from August 2011 to April 2020, and also included some earlier literatures with conceptual data sources. After screening and ranking the degree of relevance to this study, sixty of them were cited for analysis and elaboration. Results In patients with ICH, the number of cerebral microbleeds in lobes, basal ganglia, and the deep brain is positively correlated with ICH volume and independently correlated with neurological functional outcomes; white matter hyperintensity severity is positively correlated with ICH recurrence risk; multiple lacunar infarction independently predict the risk of ICH; severe brain atrophy is an independent risk factor for a poor prognosis in the long term in patients diagnosed with ICH; and the number of enlarged perivascular spaces is correlated with ICH recurrence. However, small subcortical infarct and ICH are the subject of few studies. Higher CSVD scores are independently associated with functional outcomes at 90 days in patients diagnosed with ICH.
Collapse
Affiliation(s)
- Yu-Tong Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People’s Republic of China
| | - Chun-Yan Lei
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People’s Republic of China
| | - Lian-Mei Zhong
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Huang J, Biessels GJ, de Leeuw FE, Ii Y, Skoog I, Mok V, Chen C, Hilal S. Cerebral microinfarcts revisited: Detection, causes, and clinical relevance. Int J Stroke 2024; 19:7-15. [PMID: 37470314 DOI: 10.1177/17474930231187979] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Cerebral microinfarcts (CMIs) are small ischemic lesions invisible to the naked eye at brain autopsy, while the larger ones (0.5-4 mm in diameter) have been visualized in-vivo on magnetic resonance imaging (MRI). CMIs can be detected on diffusion-weighted imaging (DWI) as incidental small DWI-positive lesions (ISDPLs) and on structural MRI for those confined to the cortex and in the chronic phase. ISDPLs may evolve into old cortical-CMIs, white matter hyperintensities or disappear depending on their location and size. Novel techniques in neuropathology and neuroimaging facilitate the detection of CMIs, which promotes understanding of these lesions. CMIs have heterogeneous causes, involving both cerebral small- and large-vessel disease as well as heart diseases such as atrial fibrillation and congestive heart failure. The underlying mechanisms incorporate vascular remodeling, inflammation, blood-brain barrier leakage, penetrating venule congestion, cerebral hypoperfusion, and microembolism. CMIs lead to clinical outcomes, including cognitive decline, a higher risk of stroke and mortality, and accelerated neurobehavioral disturbances. It has been suggested that CMIs can impair brain function and connectivity beyond the microinfarct core and are also associated with perilesional and global cortical atrophy. This review aims to summarize recent progress in studies involving both cortical-CMIs and ISDPLs since 2017, including their detection, etiology, risk factors, MRI correlates, and clinical consequences.
Collapse
Affiliation(s)
- Jiannan Huang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Neuroimaging and Pathophysiology, Mie University School of Medicine, Tsu, Japan
| | - Ingmar Skoog
- Institute of Neuroscience and Physiology and Centre for Ageing and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Region Västra Götaland, Mölndal, Sweden
| | - Vincent Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Christopher Chen
- Memory Aging and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
6
|
Chen S, Huang R, Zhang M, Huang X, Ling S, Liu S, Yang N. Altered brain spontaneous activity in patients with cerebral small vessel disease using the amplitude of low-frequency fluctuation of different frequency bands. Front Neurosci 2023; 17:1282496. [PMID: 38033542 PMCID: PMC10687154 DOI: 10.3389/fnins.2023.1282496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Background Previous studies showed that cerebral small vessel disease (cSVD) is a leading cause of cognitive decline in elderly people and the development of Alzheimer's disease. Although brain structural changes of cSVD have been documented well, it remains unclear about the properties of brain intrinsic spontaneous activity in patients with cSVD. Methods We collected resting-state fMRI (rs-fMRI) and T1-weighted 3D high-resolution brain structural images from 41 cSVD patients and 32 healthy controls (HC). By estimating the amplitude of low-frequency fluctuation (ALFF) under three different frequency bands (typical band: 0.01-0.1 Hz; slow-4: 0.027-0.073 Hz; and slow-5: 0.01-0.027 Hz) in the whole-brain, we analyzed band-specific ALFF differences between the cSVD patients and controls. Results The cSVD patients showed uniformly lower ALFF than the healthy controls in the typical and slow-4 bands (pFWE < 0.05). In the typical band, cSVD patients showed lower ALFF involving voxels of the fusiform, hippocampus, inferior occipital cortex, middle occipital cortex, insula, inferior frontal cortex, rolandic operculum, and cerebellum compared with the controls. In the slow-4 band, cSVD patients showed lower ALFF involving voxels of the cerebellum, hippocampus, occipital, and fusiform compared with the controls. However, there is no significant between-group difference of ALFF in the slow-5 band. Moreover, we found significant "group × frequency" interactions in the left precuneus. Conclusion Our results suggested that brain intrinsic spontaneous activity of cSVD patients was abnormal and showed a frequency-specific characteristic. The ALFF in the slow-4 band may be more sensitive to detecting a malfunction in cSVD patients.
Collapse
Affiliation(s)
- Sina Chen
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Ruiwang Huang
- Center for Study of Applied Psychology, School of Psychology, South China Normal University, Guangzhou, Guangdong, China
| | - Mingxian Zhang
- Center for Study of Applied Psychology, School of Psychology, South China Normal University, Guangzhou, Guangdong, China
| | - Xiaohuang Huang
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Shuiqiao Ling
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Shuxue Liu
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Nan Yang
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| |
Collapse
|
7
|
Ishikawa H, Niwa A, Kato S, Ii Y, Shindo A, Matsuura K, Nishiguchi Y, Tamura A, Taniguchi A, Maeda M, Hashizume Y, Tomimoto H. Micro-MRI improves the accuracy of clinical diagnosis in cerebral small vessel disease. Brain Commun 2021; 3:fcab070. [PMID: 33997783 PMCID: PMC8111066 DOI: 10.1093/braincomms/fcab070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022] Open
Abstract
Even with postmortem pathological examination, only limited information is provided of the foci of in vivo clinical information. Cerebral small vessel disease, which is associated with ageing, dementia and stroke, highlights the difficulty in arriving at a definitive diagnosis of the lesions detected on in vivo radiological examination. We performed a radiological−pathological comparative study using ex vivo MRI to examine small cerebral lesions. Four patients with small vessel disease lesions detected on in vivo MRI were studied. Exact pathological findings of in vivo MRI-detected lesions were revealed. The ischaemic lesion after 17 days from onset showed positivity for peroxiredoxin, cluster of differentiation 204 and glial fibrillary acidic protein, indicating sterile inflammation and neuroprotective reaction. Cortical microinfarcts beneath the cortical superficial siderosis were associated with inflammation from the superficial layer in a patient with cerebral amyloid angiopathy; in this patient, a bilinear track-like appearance of the cortical superficial siderosis on the ex vivo MRI was compatible with iron deposition on the pia matter and within cortical layers II–III. An in vivo MRI-detected cerebral microbleed was revealed to be heterogeneous. An in vivo MRI-detected cerebral microbleed was revealed to be a venous angioma. Furthermore, a neuropathologically confirmed embolic cerebral microbleed was firstly detected using this method. Our results suggest that in vivo MRI-detected lobar cerebral microbleeds can be caused by non-cerebral amyloid angiopathy aetiologies, such as microembolism and venous angioma. Venous angioma and embolic microbleeds may mimic cerebral amyloid angiopathy markers on in vivo MRI. To clarify the clinical importance of these lesions, we should investigate their rate and frequency in a large cohort of healthy individuals and patients with cardiac risk factors. Thus, we provide evidence that ex vivo micro-MRI improves the clinical diagnosis of small vessel diseases.
Collapse
Affiliation(s)
- Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Atsushi Niwa
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Shinya Kato
- Radioisotope Facilities for Medical Science, Advanced Science Research Promotion Center, Mie University, Tsu, Mie, 514-8507, Japan
| | - Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Keita Matsuura
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yamato Nishiguchi
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Asako Tamura
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Akira Taniguchi
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Fukushimura Hospital, Aichi 441-8124, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| |
Collapse
|
8
|
Umino M, Maeda M, Kogue R, Nakamura S, Ii Y, Tomimoto H, Sakuma H. Evaluation of cortical superficial siderosis in patients with cognitive dysfunction using 3D FLAIR and 3D DIR. Eur Radiol 2021; 31:6411-6418. [PMID: 33630158 DOI: 10.1007/s00330-021-07751-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/10/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Our aim was to evaluate the detectability of cortical superficial siderosis (cSS) by 3D FLAIR and 3D DIR images in comparison with the SWI images in patients with cognitive dysfunction. METHODS We studied 246 patients with cognitive dysfunction (144 women, 102 men; mean age: 75.5 ± 7.53 years) who visited a memory clinic at our hospital and underwent MR examinations at 3 T. Specifically, 16 patients with Alzheimer disease (AD) (n = 11) and AD with cerebrovascular disease (n = 5) manifested cSS based on SWI. Each set of MR images (3D FLAIR and 3D DIR) was reviewed by two reviewers separately for the detection of sulcal hyperintensity that suggested cSS. RESULTS SWI detected a greater number of cSS sulci than 3D DIR and 3D FLAIR. The sensitivity and specificity for the detection of sulcal hyperintensity were the same between 3D FLAIR and 3D DIR (87.5%/100%). However, 3D DIR detected a greater number of cSS sulci than 3D FLAIR (p = .005). CONCLUSIONS Our study showed that 3D DIR and 3D FLAIR can detect sulcal hyperintensity related to cSS although they are less sensitive to cSS lesions than SWI. KEY POINTS • 3D FLAIR and 3D DIR can show sulcal signal abnormalities related to cSS in patients with cognitive dysfunction. • 3D FLAIR and 3D DIR detect sulcal hyperintensity of cSS, although they are less sensitive to cSS than SWI. • Signal alterations due to cSS are more detectable in 3D DIR than in 3D FLAIR.
Collapse
Affiliation(s)
- Maki Umino
- Department of Radiology, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University School of Medicine, Tsu, Mie, Japan
| | - Ryota Kogue
- Department of Radiology, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Satoshi Nakamura
- Department of Radiology, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yuichiro Ii
- Department of Neurology, Mie University School of Medicine, Tsu, Mie, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University School of Medicine, Tsu, Mie, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|