1
|
Hewlett M, Oran O, Liu J, Drangova M. Prospective motion correction for R 2 * and susceptibility mapping using spherical navigators. Magn Reson Med 2025; 93:1642-1656. [PMID: 39627965 PMCID: PMC11782710 DOI: 10.1002/mrm.30385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 02/01/2025]
Abstract
PURPOSE To perform prospective motion correction (PMC) for improvedR 2 * $$ {R}_2^{\ast } $$ and susceptibility mapping using a purely navigator-based approach. METHODS Spherical navigators (SNAVs) were combined with an additional FID readout for simultaneous measurement of motion and zeroth-order field shifts. The resulting FIDSNAVs were interleaved for PMC of a multi-echo gradient echo sequence with retrospectiveB 0 $$ {B}_0 $$ correction. Experiments were performed on a 3T scanner with a 32-channel head coil. Performance was assessed in five volunteers with motion prompts derived from real unintentional motion trajectories. RESULTS At short TEs, PMC alone was sufficient to achieve good image quality; at longer TEs, retrospectiveB 0 $$ {B}_0 $$ correction was often just as important for artifact reduction as motion correction. Both PMC and retrospectiveB 0 $$ {B}_0 $$ correction reduced error inR 2 * $$ {R}_2^{\ast } $$ and susceptibility maps for all participants. Residual artifacts were observed in the most severe motion case. CONCLUSION Combining SNAVs with an additional FID readout enables simultaneous motion and field correction with no additional hardware requirements, improving the fidelity of quantitative mapping in the presence of motion.
Collapse
Affiliation(s)
- Miriam Hewlett
- Robarts Research InstituteThe University of Western Ontario
LondonOntarioCanada
- Department of Medical BiophysicsThe University of Western OntarioLondonOntarioCanada
| | - Omer Oran
- Siemens Healthcare LimitedOakvilleOntarioCanada
| | - Junmin Liu
- Robarts Research InstituteThe University of Western Ontario
LondonOntarioCanada
| | - Maria Drangova
- Robarts Research InstituteThe University of Western Ontario
LondonOntarioCanada
- Department of Medical BiophysicsThe University of Western OntarioLondonOntarioCanada
| |
Collapse
|
2
|
Zierfuss B, Wang Z, Jackson AN, Moezzi D, Yong VW. Iron in multiple sclerosis - Neuropathology, immunology, and real-world considerations. Mult Scler Relat Disord 2023; 78:104934. [PMID: 37579645 DOI: 10.1016/j.msard.2023.104934] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Iron is an essential element involved in a multitude of bodily processes. It is tightly regulated, as elevated deposition in tissues is associated with diseases such as multiple sclerosis (MS). Iron accumulation in the central nervous system (CNS) of MS patients is linked to neurotoxicity through mechanisms including oxidative stress, glutamate excitotoxicity, misfolding of proteins, and ferroptosis. In the past decade, the combination of MRI and histopathology has enhanced our understanding of iron deposition in MS pathophysiology, including in the pro-inflammatory and neurotoxicity of iron-laden rims of chronic active lesions. In this regard, iron accumulation may not only have an impact on different CNS-resident cells but may also promote the innate and adaptive immune dysfunctions in MS. Although there are discordant results, most studies indicate lower levels of iron but higher amounts of the iron storage molecule ferritin in the circulation of people with MS. Considering the importance of iron, there is a need for evidence-guided recommendation for dietary intake in people living with MS. Potential novel therapeutic approaches include the regulation of iron levels using next generation iron chelators, as well as therapies to interfere with toxic consequences of iron overload including antioxidants in MS.
Collapse
Affiliation(s)
- Bettina Zierfuss
- The Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal H2X 0A9, Québec, Canada
| | - Zitong Wang
- Department of Psychiatry, College of Health Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - Alexandra N Jackson
- School of Rehabilitation Therapy, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Dorsa Moezzi
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
3
|
Tortuyaux R, Avila-Gutierrez K, Oudart M, Mazaré N, Mailly P, Deschemin JC, Vaulont S, Escartin C, Cohen-Salmon M. Physiopathological changes of ferritin mRNA density and distribution in hippocampal astrocytes in the mouse brain. J Neurochem 2022; 164:847-857. [PMID: 36562685 DOI: 10.1111/jnc.15747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Astrocytes are thought to play a crucial role in brain iron homeostasis. How they accomplish this regulation in vivo is unclear. In a recent transcriptomic analysis, we showed that polysomal Ftl1 and Fth1 mRNAs, encoding the ferritin light (Ftl) and heavy (Fth) chains that assemble into ferritin, a critical complex for iron storage and reduction, are enriched in perisynaptic astrocytic processes as compared to astrocytic soma. These data suggested that ferritin translation plays a specific role at the perisynaptic astrocytic interface and is tighly regulated by local translation. Here, we used our recently described AstroDot 3D in situ methodology to study the density and localization of ferritin mRNAs in astrocytes in the hippocampus in three different contexts in which local or systemic iron overload has been documented: aging, the hepcidin knock-out mouse model of hemochromatosis and the APP/PS1dE9 mouse model of Alzheimer's disease (AD). Our results showed that in wild type mice, Fth1 mRNA density was higher than Ftl1 and that both mRNAs were mostly distributed in astrocyte fine processes. Aging and absence of hepcidin caused an increased Fth1/Ftl1 ratio in astrocytes and in the case of aging, led to a redistribution of Fth1 mRNAs in astrocytic fine processes. In contrast, in AD mice, we observed a lower Fth1/Ftl1 ratio. Fth1 mRNAs became more somatic and Ftl1 mRNAs redistributed in large processes of astrocytes proximal to Amyloid beta (Aß) deposits. Hence, we propose that regulation of ferritin mRNA density and distribution in astrocytes contribute to iron homeostasis in physiology and pathophysiology.
Collapse
Affiliation(s)
- Romain Tortuyaux
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France.,Intensive Care Unit, CHU Lille, Lille, France
| | - Katia Avila-Gutierrez
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Marc Oudart
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Noémie Mazaré
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | | | - Sophie Vaulont
- CNRS, INSERM, Institut Cochin, Université Paris Cité, Paris, France
| | - Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
4
|
Sethi SK, Sharma S, Gharabaghi S, Reese D, Chen Y, Adams P, Jog MS, Haacke EM. Quantifying Brain Iron in Hereditary Hemochromatosis Using R2* and Susceptibility Mapping. AJNR Am J Neuroradiol 2022; 43:991-997. [PMID: 35798390 DOI: 10.3174/ajnr.a7560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/10/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Brain iron dyshomeostasis is increasingly recognized as an important contributor to neurodegeneration. Hereditary hemochromatosis is the most commonly inherited disorder of systemic iron overload. Although there is an increasing interest in excessive brain iron deposition, there is a paucity of evidence showing changes in brain iron exceeding that in healthy controls. Quantitative susceptibility mapping and R2* mapping are established MR imaging techniques that we used to noninvasively quantify brain iron in subjects with hereditary hemochromatosis. MATERIALS AND METHODS Fifty-two patients with hereditary hemochromatosis and 47 age- and sex-matched healthy controls were imaged using a multiecho gradient-echo sequence at 3T. Quantitative susceptibility mapping and R2* data were generated, and regions within the deep gray matter were manually segmented. Mean susceptibility and R2* relaxation rates were calculated for each region, and iron content was compared between the groups. RESULTS We noted elevated iron levels in patients with hereditary hemochromatosis compared with healthy controls using both R2* and QSM methods in the caudate nucleus, putamen, pulvinar thalamus, red nucleus, and dentate nucleus. Additionally, the substantia nigra showed increased susceptibility while the thalamus showed an increased R2* relaxation rate compared with healthy controls, respectively. CONCLUSIONS Both quantitative susceptibility mapping and R2* showed abnormal levels of brain iron in subjects with hereditary hemochromatosis compared with controls. Quantitative susceptibility mapping and R2* can be acquired in a single MR imaging sequence and are complementary in quantifying deep gray matter iron.
Collapse
Affiliation(s)
- S K Sethi
- From the Department of Radiology (S.K.S., E.M.H.), Wayne State University, Detroit, Michigan .,SpinTech MRI Inc (S.K.S., S.G., E.M.H.), Bingham Farms, Michigan
| | - S Sharma
- Department of Clinical Neurological Sciences (S.S., M.S.J.), London Health Sciences Centre
| | - S Gharabaghi
- SpinTech MRI Inc (S.K.S., S.G., E.M.H.), Bingham Farms, Michigan
| | - D Reese
- Imaging Research Laboratories (D.R.), Robarts Research Institute, London, Ontario, Canada
| | - Y Chen
- Department of Neurology (Y.C.), Wayne State University School of Medicine, Detroit, Michigan
| | - P Adams
- Division of Gastroenterology (P.A.), Department of Medicine, Western University, London, Ontario, Canada
| | - M S Jog
- Department of Clinical Neurological Sciences (S.S., M.S.J.), London Health Sciences Centre
| | - E M Haacke
- From the Department of Radiology (S.K.S., E.M.H.), Wayne State University, Detroit, Michigan.,SpinTech MRI Inc (S.K.S., S.G., E.M.H.), Bingham Farms, Michigan
| |
Collapse
|