1
|
Li J, Xu X, Deng X, Li S, Guo T, Xie H. Association of Vestibular Disorders and Cognitive Function: A Systematic Review. Laryngoscope 2024; 134:4858-4872. [PMID: 39016124 DOI: 10.1002/lary.31646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/25/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES The purpose of this study is to consolidate and condense the available evidence about the potential association between vestibular diseases and cognitive impairment. DATA SOURCES AND METHODS A systematic search was conducted on four English databases (PubMed, Embase, Web of Science, Cochrane Library) from the time of library construction to March 2024. The study incorporated various keywords such as "vestibular disorders," "vertigo," "dizziness," "Meniere's disease," "benign paroxysmal positional vertigo," "vestibular migraine," "vestibular neuritis," "labyrinthitis," "bilateral vestibular disease," as well as "cognitive function" and "cognitive dysfunction." A qualitative review was conducted to look for and assess pertinent studies. RESULTS A total of 45 publications were incorporated, encompassing prevalent vestibular disorders, mostly targeting individuals in the middle-aged and older demographic. The findings indicate that individuals with vestibular disorders experience varying levels of cognitive impairment, which is evident in different aspects, with visuospatial cognitive deficits being more prominent. Furthermore, patients with chronic vestibular syndromes are more prone to cognitive dysfunction. Lastly, the hippocampus plays a crucial role in the intricate vestibular neural network. CONCLUSION The findings of this comprehensive review indicate that vestibular disorders can result in impairments across various aspects of cognitive functioning, particularly in visuospatial cognition. The underlying mechanism may be associated with a decrease in the size of the hippocampus. Individuals suffering from chronic vestibular dysfunction exhibit a higher likelihood of experiencing cognitive deficits. LEVEL OF EVIDENCE NA Laryngoscope, 134:4858-4872, 2024.
Collapse
Affiliation(s)
- Jiongke Li
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianpeng Xu
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinxing Deng
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Guo
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Xie
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Gerb J, Oertle V, Becker-Bense S, Brandt T, Dieterich M. Subjective spatial orientation discomfort is associated with decreased real-world spatial performance and lower cognitive function. Front Neurosci 2024; 18:1481653. [PMID: 39605790 PMCID: PMC11599218 DOI: 10.3389/fnins.2024.1481653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Background Spatial memory and orientation deficits often precede cognitive impairment in incipient dementia, e.g., Alzheimer's disease. Therefore, early diagnosis of spatial impairment may be crucial to the initiation of an adequate therapeutic intervention. Subjective tests, such as spatial anxiety and spatial discomfort questionnaires, and objective tests in the form of quantitative measures of orientation, are available. In these tests, vestibular hypofunction has often been neglected as a potential confounder. The major research question in this study was how self-assessed questionnaires correlate with the data from objective measures in participants with proven normal vestibular function. Methods A heterogeneous group of 135 participants (72 females, 63 males, mean age 62.75 ± 14.46 years) from a tertiary center for vertigo and balance disorders consisting of two cohorts, with (n = 49) and without (n = 86) cognitive deficits in a screening test (MoCA), was examined (a) with a newly introduced inventory for subjective spatial discomfort (Extended Inventory for Spatial Orientation Discomfort, EISOD), (b) a well-established questionnaire for subjective spatial skills (Santa Barbara Sense of Direction Scale, SBSODS), and (c) the objective three-dimensional real-world pointing task (3D-RWPT) before and after horizontal body rotations. In all patients, acute central or peripheral vestibular deficits were ruled out by neuro-orthoptics, bithermal water calorics and video head impulse testing. Results Self-assessed spatial orientation discomfort (EISOD) correlated with the amount of spatial impairment in the 3D-RWPT for both cohorts. The cognitively impaired patients showed significantly higher levels of spatial discomfort (i.e., lower scores; Welch's t-test t-2.58, p < 0.01, Cohen's d - 0.46), and higher angular deviations in the (cognitively demanding) transformation paradigm of the 3D-RWPT (t 2.37, p 0.02, Cohen's d 0.44). They preferred retinotopic/egocentric spatial encoding strategies in the pointing task (Welch's t-test t-2.61, p < 0.01, Cohen's d - 0.47). In contrast, the self-report of spatial abilities (SBSODS) yielded no significant group differences (t - 1.66, p 0.10) and was not reliably associated with objective accuracy in the pointing task. Conclusion In patients without vestibular deficits, subjective spatial discomfort (EISOD) correlated with the accuracy in an objective 3D-pointing task for both cohorts, and higher discomfort was associated with more severe cognitive impairment. EISOD-scores showed higher correlation indices than a self-report of spatial skills using the SBSODS. When investigating spatial abilities in patients with suspected cognitive impairment, it appears reasonable that both subjective spatial discomfort, subjective spatial abilities, and objective spatial measures should be combined. Future research in patients with vestibular dysfunction is needed to understand the role of vestibular deficits for the development of spatial orientation discomfort.
Collapse
Affiliation(s)
- Johannes Gerb
- German Center for Vertigo and Balance Disorders, LMU University Hospital, Munich, Germany
| | - Vivien Oertle
- German Center for Vertigo and Balance Disorders, LMU University Hospital, Munich, Germany
| | - Sandra Becker-Bense
- German Center for Vertigo and Balance Disorders, LMU University Hospital, Munich, Germany
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders, LMU University Hospital, Munich, Germany
- Graduate School of Systemic Neuroscience, LMU Munich, Munich, Germany
- Hertie Senior Professor for Clinical Neuroscience, LMU Munich, Munich, Germany
| | - Marianne Dieterich
- German Center for Vertigo and Balance Disorders, LMU University Hospital, Munich, Germany
- Graduate School of Systemic Neuroscience, LMU Munich, Munich, Germany
- Department of Neurology, LMU University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
3
|
Schöne CG, Vibert D, Mast FW. Executive functions in patients with bilateral and unilateral peripheral vestibular dysfunction. J Neurol 2024; 271:3291-3308. [PMID: 38466421 PMCID: PMC11136862 DOI: 10.1007/s00415-024-12267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/13/2024]
Abstract
Previous research suggests that patients with peripheral vestibular dysfunction (PVD) suffer from nonspatial cognitive problems, including executive impairments. However, previous studies that assessed executive functions are conflicting, limited to single executive components, and assessments are confounded by other cognitive functions. We compared performance in a comprehensive executive test battery in a large sample of 83 patients with several conditions of PVD (34 bilateral, 29 chronic unilateral, 20 acute unilateral) to healthy controls who were pairwise matched to patients regarding age, sex, and education. We assessed basic and complex executive functions with validated neuropsychological tests. Patients with bilateral PVD performed worse than controls in verbal initiation and working memory span, while other executive functions were preserved. Patients with chronic unilateral PVD had equal executive performance as controls. Patients with acute unilateral PVD performed worse than controls in the exact same tests as patients with bilateral PVD (verbal initiation, working memory span); however, this effect in patients with acute PVD diminished after correcting for multiple comparisons. Hearing loss and affective disorders did not influence our results. Vestibular related variables (disease duration, symptoms, dizziness handicap, deafferentation degree, and compensation) did not predict verbal initiation or working memory span in patients with bilateral PVD. The results suggest that bilateral PVD not only manifests in difficulties when solving spatial tasks but leads to more general neurocognitive deficits. This understanding is important for multidisciplinary workgroups (e.g., neurotologists, neurologists, audiologists) that are involved in diagnosing and treating patients with PVD. We recommend screening patients with PVD for executive impairments and if indicated providing them with cognitive training or psychoeducational support.
Collapse
Affiliation(s)
- Corina G Schöne
- Department of Psychology, University of Bern, Bern, Switzerland.
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.
| | - Dominique Vibert
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Fred W Mast
- Department of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Gerb J, Brandt T, Dieterich M. A clinical 3D pointing test differentiates spatial memory deficits in dementia and bilateral vestibular failure. BMC Neurol 2024; 24:75. [PMID: 38395847 PMCID: PMC10885646 DOI: 10.1186/s12883-024-03569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Deficits in spatial memory, orientation, and navigation are often neglected early signs of cognitive impairment or loss of vestibular function. Real-world navigation tests require complex setups. In contrast, simple pointing at targets in a three-dimensional environment is a basic sensorimotor ability which provides an alternative measure of spatial orientation and memory at bedside. The aim of this study was to test the reliability of a previously established 3D-Real-World Pointing Test (3D-RWPT) in patients with cognitive impairment due to different neurodegenerative disorders, bilateral vestibulopathy, or a combination of both compared to healthy participants. METHODS The 3D-RWPT was performed using a static array of targets in front of the seated participant before and, as a transformation task, after a 90-degree body rotation around the yaw-axis. Three groups of patients were enrolled: (1) chronic bilateral vestibulopathy (BVP) with normal cognition (n = 32), (2) cognitive impairment with normal vestibular function (n = 28), and (3) combined BVP and cognitive impairment (n = 9). The control group consisted of age-matched participants (HP) without cognitive and vestibular deficits (n = 67). Analyses focused on paradigm-specific mean angular deviation of pointing in the azimuth (horizontal) and polar (vertical) spatial planes, of the preferred pointing strategy (egocentric or allocentric), and the resulting shape configuration of the pointing array relative to the stimulus array. Statistical analysis was performed using age-corrected ANCOVA-testing with Bonferroni correction and correlation analysis using Spearman's rho. RESULTS Patients with cognitive impairment employed more egocentric pointing strategies while patients with BVP but normal cognition and HP used more world-based solutions (pBonf 5.78 × 10-3**). Differences in pointing accuracy were only found in the azimuth plane, unveiling unique patterns where patients with cognitive impairment showed decreased accuracy in the transformation tasks of the 3D-RWPT (pBonf < 0.001***) while patients with BVP struggled in the post-rotation tasks (pBonf < 0.001***). Overall azimuth pointing performance was still adequate in some patients with BVP but significantly decreased when combined with a cognitive deficit. CONCLUSION The 3D-RWPT provides a simple and fast measure of spatial orientation and memory. Cognitive impairment often led to a shift from world-based allocentric pointing strategy to an egocentric performance with less azimuth accuracy compared to age-matched controls. This supports the view that cognitive deficits hinder the mental buildup of the stimulus pattern represented as a geometrical form. Vestibular hypofunction negatively affected spatial memory and pointing performance in the azimuth plane. The most severe spatial impairments (angular deviation, figure frame configuration) were found in patients with combined cognitive and vestibular deficits.
Collapse
Affiliation(s)
- J Gerb
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany.
| | - T Brandt
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - M Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Since October 2022, substantial new information has been published on age-related effects on the vestibular system. Since much of this evidence relates to the risk of dementia, the purpose of this review will be to provide an overview of this new information and critically evaluate it. RECENT FINDINGS This review will address studies published since October 2022 regarding age-related effects on the vestibular system and their relationship to cognition and dementia. There has been a particular increase in the last year in the number of studies relating aging of the vestibular system to Alzheimer's disease (AD), further supporting the view that vestibular dysfunction is associated with an increased risk of dementia. SUMMARY The conclusion of these recent studies is that, consistent with previous studies, vestibular function declines with age, and that this age-related decline is associated with cognitive impairment and an increased risk of dementia. Efforts are being made to consider these implications for cognition in the treatment of vestibular disorders.
Collapse
Affiliation(s)
- Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Zwergal A, Grabova D, Schöberl F. Vestibular contribution to spatial orientation and navigation. Curr Opin Neurol 2024; 37:52-58. [PMID: 38010039 PMCID: PMC10779452 DOI: 10.1097/wco.0000000000001230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
PURPOSE OF REVIEW The vestibular system provides three-dimensional idiothetic cues for updating of one's position in space during head and body movement. Ascending vestibular signals reach entorhinal and hippocampal networks via head-direction pathways, where they converge with multisensory information to tune the place and grid cell code. RECENT FINDINGS Animal models have provided insight to neurobiological consequences of vestibular lesions for cerebral networks controlling spatial cognition. Multimodal cerebral imaging combined with behavioural testing of spatial orientation and navigation performance as well as strategy in the last years helped to decipher vestibular-cognitive interactions also in humans. SUMMARY This review will update the current knowledge on the anatomical and cellular basis of vestibular contributions to spatial orientation and navigation from a translational perspective (animal and human studies), delineate the behavioural and functional consequences of different vestibular pathologies on these cognitive domains, and will lastly speculate on a potential role of vestibular dysfunction for cognitive aging and impeding cognitive impairment in analogy to the well known effects of hearing loss.
Collapse
Affiliation(s)
- Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Denis Grabova
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich
| | - Florian Schöberl
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Helmchen C, Fellbrich A, Sprenger A. Normal visuospatial function in unilateral vestibulopathy: on the challenge of group differences within normal reference data. Front Neurol 2023; 14:1334277. [PMID: 38156088 PMCID: PMC10753768 DOI: 10.3389/fneur.2023.1334277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Affiliation(s)
- Christoph Helmchen
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Anja Fellbrich
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Andreas Sprenger
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University Lübeck, Lübeck, Germany
| |
Collapse
|
8
|
Halmágyi GM, Akdal G, Welgampola MS, Wang C. Neurological update: neuro-otology 2023. J Neurol 2023; 270:6170-6192. [PMID: 37592138 PMCID: PMC10632253 DOI: 10.1007/s00415-023-11922-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Much has changed since our last review of recent advances in neuro-otology 7 years ago. Unfortunately there are still not many practising neuro-otologists, so that most patients with vestibular problems need, in the first instance, to be evaluated and treated by neurologists whose special expertise is not neuro-otology. The areas we consider here are mostly those that almost any neurologist should be able to start managing: acute spontaneous vertigo in the Emergency Room-is it vestibular neuritis or posterior circulation stroke; recurrent spontaneous vertigo in the office-is it vestibular migraine or Meniere's disease and the most common vestibular problem of all-benign positional vertigo. Finally we consider the future: long-term vestibular monitoring and the impact of machine learning on vestibular diagnosis.
Collapse
Affiliation(s)
- Gábor M Halmágyi
- Neurology Department, Royal Prince Alfred Hospital, Sydney, Australia.
- Central Clinical School, University of Sydney, Sydney, Australia.
| | - Gülden Akdal
- Neurology Department, Dokuz Eylül University Hospital, Izmir, Turkey
- Neurosciences Department, Dokuz Eylül University Hospital, Izmir, Turkey
| | - Miriam S Welgampola
- Neurology Department, Royal Prince Alfred Hospital, Sydney, Australia
- Central Clinical School, University of Sydney, Sydney, Australia
| | - Chao Wang
- Neurology Department, Royal Prince Alfred Hospital, Sydney, Australia
- Central Clinical School, University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Smith PF. Interpreting the meaning of changes in hippocampal volume associated with vestibular loss. Front Integr Neurosci 2023; 17:1254972. [PMID: 37608860 PMCID: PMC10440551 DOI: 10.3389/fnint.2023.1254972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023] Open
Abstract
Many studies have documented cognitive deficits, especially spatial cognitive deficits, in patients with some form of vestibular loss. Almost 20 years ago, hippocampal (HPC) atrophy was reported to be correlated with spatial memory deficits in such patients and the idea has gradually emerged that HPC atrophy may be causally responsible for the cognitive deficits. However, the results of studies of HPC volume following vestibular loss have not always been consistent, and a number of studies have reported no evidence of HPC atrophy. This paper argues that HPC atrophy, if it does occur following vestibular loss, may not be directly, causally responsible for the cognitive deficits, and that it is more likely that rapid functional changes in the HPC are responsible, due to the interruption of the transmission of vestibular information to the HPC. The argument presented here rests on 3 tranches of evidence: (1) Cognitive deficits have been observed in humans even in the absence of HPC atrophy; (2) HPC atrophy has not been reported in animal studies following vestibular loss, despite cognitive deficits; and (3) Animal studies have shown that the interruption of the transmission of vestibular information to the HPC has immediate consequences for HPC place cells, far too quickly to be explained by HPC atrophy. It is possible that HPC atrophy, when it does occur, is related to the longer-term consquences of living with vestibular loss, which are likely to increase circulating cortisol.
Collapse
Affiliation(s)
- Paul F. Smith
- Department of Pharmacology and Toxicology, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- The Brain Research New Zealand Centre of Research Excellence, Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|