1
|
Kulgod A, van der Linden D, França LGS, Jackson M, Zamansky A. Non-invasive canine electroencephalography (EEG): a systematic review. BMC Vet Res 2025; 21:73. [PMID: 39966923 PMCID: PMC11834203 DOI: 10.1186/s12917-025-04523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
The emerging field of canine cognitive neuroscience uses neuroimaging tools such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to map the cognitive processes of dogs to neural substrates in their brain. Within the past decade, the non-invasive use of EEG has provided real-time, accessible, and portable neuroimaging insight into canine cognitive processes. To promote systematization and create an overview of framings, methods and findings for future work, we provide a systematic review of non-invasive canine EEG studies (N=22), dissecting their study makeup, technical setup, and analysis frameworks and highlighting emerging trends. We further propose new directions of development, such as the standardization of data structures and integrating predictive modeling with descriptive statistical approaches. Our review ends by underscoring the advances and advantages of EEG-based canine cognitive neuroscience and the potential for accessible canine neuroimaging to inform both fundamental sciences as well as practical applications for cognitive neuroscience, working dogs, and human-canine interactions.
Collapse
|
2
|
Baumgartner C, Baumgartner J, Lang C, Lisy T, Koren JP. Seizure Detection Devices. J Clin Med 2025; 14:863. [PMID: 39941534 PMCID: PMC11818620 DOI: 10.3390/jcm14030863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Goals of automated detection of epileptic seizures using wearable devices include objective documentation of seizures, prevention of sudden unexpected death in epilepsy (SUDEP) and seizure-related injuries, obviating both the unpredictability of seizures and potential social embarrassment, and finally to develop seizure-triggered on-demand therapies. Automated seizure detection devices are based on the analysis of EEG signals (scalp-EEG, subcutaneous EEG and intracranial EEG), of motor manifestations of seizures (surface EMG, accelerometry), and of physiologic autonomic changes caused by seizures (heart and respiration rate, oxygen saturation, sweat secretion, body temperature). While the detection of generalized tonic-clonic and of focal to bilateral tonic-clonic seizures can be achieved with high sensitivity and low false alarm rates, the detection of focal seizures is still suboptimal, especially in the everyday ambulatory setting. Multimodal seizure detection devices in general provide better performance than devices based on single measurement parameters. Long-term use of seizure detection devices in home environments helps to improve the accuracy of seizure diaries and to reduce seizure-related injuries, while evidence for prevention of SUDEP is still lacking. Automated seizure detection devices are generally well accepted by patients and caregivers.
Collapse
Affiliation(s)
- Christoph Baumgartner
- Department of Neurology, Clinic Hietzing, 1130 Vienna, Austria; (C.L.); (J.P.K.)
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, 1130 Vienna, Austria; (J.B.); (T.L.)
- Medical Faculty, Sigmund Freud University, 1020 Vienna, Austria
| | - Jakob Baumgartner
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, 1130 Vienna, Austria; (J.B.); (T.L.)
- Medical Faculty, Sigmund Freud University, 1020 Vienna, Austria
| | - Clemens Lang
- Department of Neurology, Clinic Hietzing, 1130 Vienna, Austria; (C.L.); (J.P.K.)
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, 1130 Vienna, Austria; (J.B.); (T.L.)
| | - Tamara Lisy
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, 1130 Vienna, Austria; (J.B.); (T.L.)
| | - Johannes P. Koren
- Department of Neurology, Clinic Hietzing, 1130 Vienna, Austria; (C.L.); (J.P.K.)
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, 1130 Vienna, Austria; (J.B.); (T.L.)
| |
Collapse
|
3
|
Chung YG, Cho A, Kim H, Kim KJ. Single-channel seizure detection with clinical confirmation of seizure locations using CHB-MIT dataset. Front Neurol 2024; 15:1389731. [PMID: 38836000 PMCID: PMC11148866 DOI: 10.3389/fneur.2024.1389731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Long-term electroencephalography (EEG) monitoring is advised to patients with refractory epilepsy who have a failure of anti-seizure medication and therapy. However, its real-life application is limited mainly due to the use of multiple EEG channels. We proposed a patient-specific deep learning-based single-channel seizure detection approach using the long-term scalp EEG recordings of the Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) dataset, in conjunction with neurologists' confirmation of spatial seizure characteristics of individual patients. Methods We constructed 18-, 4-, and single-channel seizure detectors for 13 patients. Neurologists selected a specific channel among four channels, two close to the behind-the-ear and two at the forehead for each patient, after reviewing the patient's distinctive seizure locations with seizure re-annotation. Results Our multi- and single-channel detectors achieved an average sensitivity of 97.05-100%, false alarm rate of 0.22-0.40/h, and latency of 2.1-3.4 s for identification of seizures in continuous EEG recordings. The results demonstrated that seizure detection performance of our single-channel approach was comparable to that of our multi-channel ones. Discussion We suggest that our single-channel approach in conjunction with clinical designation of the most prominent seizure locations has a high potential for wearable seizure detection on long-term EEG recordings for patients with refractory epilepsy.
Collapse
Affiliation(s)
- Yoon Gi Chung
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Anna Cho
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeonggi-do, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Beniczky S, Ryvlin P. Mobile health and digital technology in epilepsy: The dawn of a new era. Epilepsia 2023; 64 Suppl 4:S1-S3. [PMID: 37921045 DOI: 10.1111/epi.17813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Sándor Beniczky
- Department of Neurophysiology, Danish Epilepsy Center, Dianalund, Denmark
- Department of Clinical Medicine, Aarhus University and Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
5
|
Huang Z, Ma Y, Wang R, Yuan B, Jiang R, Yang Q, Li W, Sun J. DSCNN-LSTMs: A Lightweight and Efficient Model for Epilepsy Recognition. Brain Sci 2022; 12:1672. [PMID: 36552132 PMCID: PMC9775067 DOI: 10.3390/brainsci12121672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is the second most common disease of the nervous system. Because of its high disability rate and the long course of the disease, it is a worldwide medical problem and social public health problem. Therefore, the timely detection and treatment of epilepsy are very important. Currently, medical professionals use their own diagnostic experience to identify seizures by visual inspection of the electroencephalogram (EEG). Not only does it require a lot of time and effort, but the process is also very cumbersome. Machine learning-based methods have recently been proposed for epilepsy detection, which can help clinicians make rapid and correct diagnoses. However, these methods often require extracting the features of EEG signals before using the data. In addition, the selection of features often requires domain knowledge, and feature types also have a significant impact on the performance of the classifier. In this paper, a one-dimensional depthwise separable convolutional neural network and long short-term memory networks (1D DSCNN-LSTMs) model is proposed to identify epileptic seizures by autonomously extracting the features of raw EEG. On the UCI dataset, the performance of the proposed 1D DSCNN-LSTMs model is verified by cross-validation and time complexity comparison. Compared with other previous models, the experimental results show that the highest recognition rates of binary and quintuple classification are 99.57% and 81.30%, respectively. It can be concluded that the 1D DSCNN-LSTMs model proposed in this paper is an effective method to identify seizures based on EEG signals.
Collapse
Affiliation(s)
| | - Yahong Ma
- School of Electronic Information, Xijing University, Xi’an 710123, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Remvig LS, Duun-Henriksen J, Fürbass F, Hartmann M, Viana PF, Kappel Overby AM, Weisdorf S, Richardson MP, Beniczky S, Kjaer TW. Detecting temporal lobe seizures in ultra long-term subcutaneous EEG using algorithm-based data reduction. Clin Neurophysiol 2022; 142:86-93. [PMID: 35987094 DOI: 10.1016/j.clinph.2022.07.504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Ultra long-term monitoring with subcutaneous EEG (sqEEG) offers objective outpatient recording of electrographic seizures as an alternative to self-reported epileptic seizure diaries. This methodology requires an algorithm-based automatic seizure detection to indicate periods of potential seizure activity to reduce the time spent on visual review. The objective of this study was to evaluate the performance of a sqEEG-based automatic seizure detection algorithm. METHODS A multicenter cohort of subjects using sqEEG were analyzed, including nine people with epilepsy (PWE) and 12 healthy subjects, recording a total of 965 days. The automatic seizure detections of a deep-neural-network algorithm were compared to annotations from three human experts. RESULTS Data reduction ratios were 99.6% in PWE and 99.9% in the control group. The cross-PWE sensitivity was 86% (median 80%, range 69-100% when PWE were evaluated individually), and the corresponding median false detection rate was 2.4 detections per 24 hours (range: 2.0-13.0). CONCLUSIONS Our findings demonstrated that step one in a sqEEG-based semi-automatic seizure detection/review process can be performed with high sensitivity and clinically applicable specificity. SIGNIFICANCE Ultra long-term sqEEG bears the potential of improving objective seizure quantification.
Collapse
Affiliation(s)
- Line S Remvig
- UNEEG Medical A/S, Borupvang 2, DK-3450 Allerød, Denmark.
| | | | - Franz Fürbass
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Manfred Hartmann
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Pedro F Viana
- Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, Denmark Hill, London, UK; Faculty of Medicine, University of Lisbon, Av. Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal
| | | | - Sigge Weisdorf
- Center of Neurophysiology, Department Neurology, Zealand University Hospital, Sygehusvej 10, DK-4000 Roskilde, Denmark
| | - Mark P Richardson
- Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, Denmark Hill, London, UK
| | - Sándor Beniczky
- The Danish Epilepsy Centre, Filadelfia, Kolonivej 1, 4293 Dianalund, Denmark; Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Blvd 99, DK-8200 Aarhus, Denmark
| | - Troels W Kjaer
- Center of Neurophysiology, Department Neurology, Zealand University Hospital, Sygehusvej 10, DK-4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3b, DK.2200 Copenhagen, Denmark
| |
Collapse
|