1
|
Vinogradov IM, Fox RJ, Fichtel C, Kappeler PM, Jennions MD. Paternity analysis reveals sexual selection on cognitive performance in mosquitofish. Nat Ecol Evol 2025; 9:692-704. [PMID: 40000808 DOI: 10.1038/s41559-025-02645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
In many animal species, cognitive abilities are under strong natural selection because decisions about foraging, habitat choice and predator avoidance affect fecundity and survival. But how has sexual selection, which is usually stronger on males than females, shaped the evolution of cognitive abilities that influence success when competing for mates or fertilizations? We aimed to investigate potential links between individual differences in male cognitive performance to variation in paternity arising solely from sexual selection. We therefore ran four standard cognitive assays to quantify five measures of cognitive performance by male mosquitofish (Gambusia holbrooki). Males were then assigned to 11 outdoor ponds where they could compete for females. Females mate many times, which leads to intense sperm competition and broods with mixed paternity. We genotyped 2,430 offspring to identify their fathers. Males with greater inhibitory control and better spatial learning abilities sired significantly more offspring, while males with better initial impulse control sired significantly fewer offspring. Associative and reversal learning did not predict a male's share of paternity. In sum, there was sexual selection on several, but not all, aspects of male cognitive performance.
Collapse
Affiliation(s)
- Ivan M Vinogradov
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Rebecca J Fox
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Michael D Jennions
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Guigueno MF, Foster ACK, Reader SM. Current predation risk has opposing effects on social learning of foraging locations across two guppy populations. Anim Cogn 2025; 28:4. [PMID: 39777581 PMCID: PMC11706856 DOI: 10.1007/s10071-024-01929-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Social learning, where animals learn from other individuals, occurs in many diverse species. The influential but debated 'costly information' hypothesis posits that animals will rely more on social information in high-risk contexts, such as under increased predation risk. We examined and compared the effects of perceived predation risk on social learning of foraging sites in female Trinidadian guppies from wild and domestic populations raised in common-garden environments. We used a demonstrator-observer pairing where a subject could observe conspecific 'demonstrators' feeding from one of two feeders, and measured whether the observer subsequently spent more time at a demonstrated or non-demonstrated feeder. We manipulated perceived predation risk using alarm cue (conspecific skin extract). Stress responses and social learning differed between the two populations. Most notably, high predation risk enhanced social learning in the wild-type guppies, but depressed it in the domestic guppies. Thus, fish from both populations were able to socially learn, but under opposing contexts. These results suggest social learning propensities are the product of multiple interacting systems, and biases to favour social learning can emerge dependent on evolutionary history and current conditions.
Collapse
Affiliation(s)
| | | | - Simon M Reader
- Department of Biology, McGill University, Quebec, Canada
| |
Collapse
|
3
|
Agrillo C, Pecunioso A. Using an Automated Operant Conditioning Procedure to Test Colour Discrimination in Two Juvenile Piranhas, Pygocentrus nattereri: A Lesson on Failures and Pitfalls and How to Avoid Them. Animals (Basel) 2024; 14:3187. [PMID: 39595240 PMCID: PMC11591000 DOI: 10.3390/ani14223187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Most studies on the cognitive abilities of fish have focused on model organisms adopted in behavioural neuroscience. To date, little attention has been devoted to characiformes fish and we record a lack of cognitive investigation on the piranha. In this study, we conducted a preliminary set of experiments to assess whether red-bellied piranhas (Pygocentrus nattereri) can solve an automated operant conditioning task, specifically, a reversal learning task. In Experiment 1, the fish were required to discriminate between red and green, while in Experiment 2, they had to discriminate between white and yellow. In either case, we found no evidence of learning capacities with our protocol after extensive training exceeding one thousand trials overall. In Experiment 3, we simplified the learning task by using achromatic stimuli (black and white discrimination) and always presenting the reinforced stimulus on the same side of the tank (a combination of response learning and place learning). Subjects did learn how to discriminate between the colours, although no subject was able to reach the criterion in the subsequent reversal learning task, suggesting that piranhas may be limited in their cognitive flexibility. However, our training procedure may have been inefficient in addressing this issue. We outline some potential limitations of the current methodology to help to establish a more effective approach for investigating operant conditioning in this species.
Collapse
Affiliation(s)
- Christian Agrillo
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy;
- Padua Neuroscience Center, 35131 Padova, Italy
| | - Alessandra Pecunioso
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy;
| |
Collapse
|
4
|
Volotsky S, Ben-Shahar O, Donchin O, Segev R. Recognition of natural objects in the archerfish. J Exp Biol 2022; 225:274265. [PMID: 35142811 PMCID: PMC8918800 DOI: 10.1242/jeb.243237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022]
Abstract
Recognition of individual objects and their categorization is a complex computational task. Nevertheless, visual systems can perform this task in a rapid and accurate manner. Humans and other animals can efficiently recognize objects despite countless variations in their projection on the retina due to different viewing angles, distance, illumination conditions and other parameters. To gain a better understanding of the recognition process in teleosts, we explored it in archerfish, a species that hunts by shooting a jet of water at aerial targets and thus can benefit from ecologically relevant recognition of natural objects. We found that archerfish not only can categorize objects into relevant classes but also can do so for novel objects, and additionally they can recognize an individual object presented under different conditions. To understand the mechanisms underlying this capability, we developed a computational model based on object features and a machine learning classifier. The analysis of the model revealed that a small number of features was sufficient for categorization, and the fish were more sensitive to object contours than textures. We tested these predictions in additional behavioral experiments and validated them. Our findings suggest the existence of a complex visual process in the archerfish visual system that enables object recognition and categorization. Highlighted Article: Archerfish are capable of natural object recognition and categorization based on a small number of visual features.
Collapse
Affiliation(s)
- Svetlana Volotsky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Ohad Ben-Shahar
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Department of Computer Science, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Opher Donchin
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Ronen Segev
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| |
Collapse
|
5
|
Montalbano G, Bertolucci C, Lucon-Xiccato T. Cognitive Phenotypic Plasticity: Environmental Enrichment Affects Learning but Not Executive Functions in a Teleost Fish, Poecilia reticulata. BIOLOGY 2022; 11:64. [PMID: 35053062 PMCID: PMC8772815 DOI: 10.3390/biology11010064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Many aspects of animal cognition are plastically adjusted in response to the environment through individual experience. A remarkable example of this cognitive phenotypic plasticity is often observed when comparing individuals raised in a barren environment to individuals raised in an enriched environment. Evidence of enrichment-driven cognitive plasticity in teleost fish continues to grow, but it remains restricted to a few cognitive traits. The purpose of this study was to investigate how environmental enrichment affects multiple cognitive traits (learning, cognitive flexibility, and inhibitory control) in the guppy, Poecilia reticulata. To reach this goal, we exposed new-born guppies to different treatments: an enrichment environment with social companions, natural substrate, vegetation, and live prey or a barren environment with none of the above. After a month of treatment, we tested the subjects in a battery of three cognitive tasks. Guppies from the enriched environment learned a color discrimination faster compared to guppies from the environment with no enrichments. We observed no difference between guppies of the two treatments in the cognitive flexibility task, requiring selection of a previously unrewarded stimulus, nor in the inhibitory control task, requiring the inhibition of the attack response toward live prey. Overall, the results indicated that environmental enrichment had an influence on guppies' learning ability, but not on the remaining cognitive functions investigated.
Collapse
Affiliation(s)
- Giulia Montalbano
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
| | | |
Collapse
|
6
|
Toure MW, Reader SM. Colour biases in learned foraging preferences in Trinidadian guppies. Ethology 2021. [DOI: 10.1111/eth.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Wyatt Toure
- Department of Biology McGill University Montreal QC Canada
| | | |
Collapse
|
7
|
Jolles JW. Broad‐scale applications of the Raspberry Pi: A review and guide for biologists. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13652] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jolle W. Jolles
- Zukunftskolleg University of Konstanz Konstanz Germany
- Department of Collective Behaviour Max Planck Institute of Animal Behaviour Konstanz Germany
- Centre for Research on Ecology and Forestry Applications (CREAF) Barcelona Spain
| |
Collapse
|
8
|
Automated Operant Conditioning Devices for Fish. Do They Work? Animals (Basel) 2021; 11:ani11051397. [PMID: 34068933 PMCID: PMC8156027 DOI: 10.3390/ani11051397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Automated training devices are commonly used for investigating learning, memory, and other cognitive functions in warm-blood vertebrates, whereas manual training procedures are the standard in fish and other lower vertebrates, thus limiting comparison among species. Here, we directly compared the two different approaches to training in guppies (Poecilia reticulata) by administering numerical discrimination tasks of increasing difficulty. The automated device group showed a much lower performance compared to the traditionally-trained group. We modified some features of the automated device in order to improve its efficiency. Increasing the decision time or inter-trial interval was ineffective, while reducing the cognitive load and allowing subjects to reside in the test tank improved numerical performance. Yet, in no case did subjects match the performance of traditionally-trained subjects, suggesting that small teleosts may be limited in their capacity to cope with operant conditioning devices. Abstract The growing use of teleosts in comparative cognition and in neurobiological research has prompted many researchers to develop automated conditioning devices for fish. These techniques can make research less expensive and fully comparable with research on warm-blooded species, in which automated devices have been used for more than a century. Tested with a recently developed automated device, guppies (Poecilia reticulata) easily performed 80 reinforced trials per session, exceeding 80% accuracy in color or shape discrimination tasks after only 3–4 training session, though they exhibit unexpectedly poor performance in numerical discrimination tasks. As several pieces of evidence indicate, guppies possess excellent numerical abilities. In the first part of this study, we benchmarked the automated training device with a standard manual training procedure by administering the same set of tasks, which consisted of numerical discriminations of increasing difficulty. All manually-trained guppies quickly learned the easiest discriminations and a substantial percentage learned the more difficult ones, such as 4 vs. 5 items. No fish trained with the automated conditioning device reached the learning criterion for even the easiest discriminations. In the second part of the study, we introduced a series of modifications to the conditioning chamber and to the procedure in an attempt to improve its efficiency. Increasing the decision time, inter-trial interval, or visibility of the stimuli did not produce an appreciable improvement. Reducing the cognitive load of the task by training subjects first to use the device with shape and color discriminations, significantly improved their numerical performance. Allowing the subjects to reside in the test chamber, which likely reduced the amount of attentional resources subtracted to task execution, also led to an improvement, although in no case did subjects match the performance of fish trained with the standard procedure. Our results highlight limitations in the capacity of small laboratory teleosts to cope with operant conditioning automation that was not observed in laboratory mammals and birds and that currently prevent an easy and straightforward comparison with other vertebrates.
Collapse
|
9
|
Fong S, Buechel SD, Boussard A, Kotrschal A, Kolm N. Plastic changes in brain morphology in relation to learning and environmental enrichment in the guppy ( Poecilia reticulata). ACTA ACUST UNITED AC 2019; 222:jeb.200402. [PMID: 31053644 DOI: 10.1242/jeb.200402] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
Despite the common assumption that the brain is malleable to surrounding conditions mainly during ontogeny, plastic neural changes can occur also in adulthood. One of the driving forces responsible for alterations in brain morphology is increasing environmental complexity that may demand enhanced cognitive abilities (e.g. attention, memory and learning). However, studies looking at the relationship between brain morphology and learning are scarce. Here, we tested the effects of both learning and environmental enrichment on neural plasticity in guppies (Poecilia reticulata), by means of either a reversal-learning test or a spatial-learning test. Given considerable evidence supporting environmentally induced plastic alterations, two separate control groups that were not subjected to any cognitive test were included to account for potential changes induced by the experimental setup alone. We did not find any effect of learning on any of our brain measurements. However, we found strong evidence for an environmental effect, where fish given access to the spatial-learning environment had larger relative brain size and optic tectum size in relation to those exposed to the reversal-learning environment. Our results demonstrate the plasticity of the adult brain to respond adaptively mainly to environmental conditions, providing support for the environmental enhancement theory.
Collapse
Affiliation(s)
- Stephanie Fong
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Séverine D Buechel
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Annika Boussard
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Niclas Kolm
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|